

Retrocomputing

with Clash
Haskell for FPGA Hardware Design

GERGŐ ÉRDI

https://unsafePerform.IO/retroclash/

https://unsafePerform.IO/retroclash/

Retrocomputing with Clash: Haskell for FPGA Hardware Design

Copyright ©2021 Gergő Érdi

All rights reserved. No part of this book may be reproduced, distributed, or transmitted
in any form or by any means, including photocopying, recording, or other electronic or
mechanical methods, without the prior written permisison of the copyright owner, except
for the use of quotations in a book review and certain other noncommercial uses permitted
by copyright law.

First edition, 2021.

Cover by Jutka Sallai

Bouncy pushbutton scope screenshot from https://commons.wikimedia.org/wiki/File:

Bouncy_Switch.png licensed under the terms of the Creative Commons CC0 1.0
Universal Public Domain Dedication cz

https://unsafePerform.IO/retroclash/

https://commons.wikimedia.org/wiki/File:Bouncy_Switch.png
https://commons.wikimedia.org/wiki/File:Bouncy_Switch.png
https://unsafePerform.IO/retroclash/

Contents

Introduction 1

1 Into the world of FPGAs 5
1.1 Computers everywhere . 5
1.2 Field-programmable Gate Arrays . 8
1.3 Retrocomputing . 15
1.4 Haskell meets Hardware . 16

2 Hello, Clash! 19
2.1 Bit . 19
2.2 Signal . 20
2.3 Our first circuit . 20
2.4 Summary . 25

3 Combinational Circuits are Applicative Functors 27
3.1 Signal is an applicative functor . 27
3.2 BitVectors and Vectors . 29
3.3 Controlling many LEDs . 30
3.4 Seven-segment display . 32
3.5 Summary . 38

4 State, Sequencing and Clocks: The Register Transfer-Level Model 39
4.1 Clocks and registers . 40
4.2 The RTL model: register and delayed feedback 42
4.3 Finally blinkenlights! . 46
4.4 Passing around Clock, Reset and Enable lines implicitly 51
4.5 Multiple clocks . 54
4.6 Pushbutton-toggled LED . 55
4.7 Summary . 60

i

5 Time-domain Multiplexing 63
5.1 Does this have anything to do with mux? 63
5.2 Seven-segment displays, revisited . 64
5.3 Keyboard matrix sweeping . 69
5.4 Showing keypad input on a seven-segment output 74
5.5 Summary . 78

6 Project: Pocket Calculator 79
6.1 A Minimal Viable Calculator . 79
6.2 Binary Coded Decimal arithmetic . 81
6.3 State and state transitions . 85
6.4 An interactive software implementation 89
6.5 Hooking it up to hardware peripherals 91
6.6 Summary . 95

7 Video Output Using VGA 97
7.1 Basic operation of a CRT display . 97
7.2 Video Graphics Array . 101
7.3 VGA from Clash . 106
7.4 Summary . 114

8 Generative Graphics 117
8.1 Combinational patterns . 117
8.2 Stateful pattern generators . 118
8.3 Animation . 120
8.4 Coordinate transformations . 124
8.5 Animation, differently . 130
8.6 High-level simulation with SDL2 . 135
8.7 Summary . 143

9 Project: Pong 145
9.1 What is Pong? . 145
9.2 Top-level design . 146
9.3 What is our state? . 148
9.4 Drawing . 153
9.5 Summary . 154

10 Asynchronous Serial Communication 155
10.1 Synchronicity . 155
10.2 Universal Asynchronous Serial Communication 156
10.3 Serial Transmitter . 158

ii

10.4 Serial Receiver . 165
10.5 Applications . 168
10.6 Summary . 172

11 Programmable Machines 173
11.1 RAM machines . 173
11.2 Memory . 175
11.3 CPU . 181
11.4 Summary . 186

12 Brainfuck 187
12.1 Why Brainfuck . 187
12.2 Brainfuck as a programming language 188
12.3 Brainfuck as byte code . 191
12.4 Brainfuck with external memory . 194
12.5 A complete Brainfuck computer . 198
12.6 Brainfuck as machine code . 200
12.7 High-level simulation of the CPU . 218
12.8 The logic board . 220
12.9 Low-level simulation of the logic board 226
12.10 Top-level circuit and peripherals . 230
12.11 Summary . 236

13 CHIP-8 237
13.1 History . 237
13.2 The CHIP-8 computer . 238
13.3 Instruction set . 243
13.4 Video . 250
13.5 CPU . 267
13.6 Simulation, take 1 . 286
13.7 The complete machine . 289
13.8 Simulation, take 2 . 292
13.9 Memory contention . 293
13.10 Summary . 302

14 Address decoding and memory maps 303
14.1 Room for improvement . 303
14.2 A whirlwind intro to Template Haskell 305
14.3 A memory map DSL . 311
14.4 Backpane connections . 320
14.5 Access contention . 327

iii

14.6 Summary . 329

15 Intel 8080 331
15.1 History . 331
15.2 Veracity . 331
15.3 Interface . 333
15.4 Instruction set architecture . 338
15.5 Instruction decoding . 344
15.6 Microcoded implementation . 349
15.7 Micro-architecture & micro-instructions 357
15.8 A direct software implementation . 376
15.9 The complete CPU . 384
15.10 Summary . 398

16 Project: TinyBASIC 401
16.1 What is Tiny BASIC? . 401
16.2 Asynchronous Communications Interface Adapter 402
16.3 The core logic board . 404
16.4 Version 1: serial I/O . 410
16.5 PS/2 keyboard interface . 410
16.6 Textual video . 417
16.7 Screen editing . 424
16.8 Version 2: Keyboard and video . 427
16.9 Summary . 428

17 Space Invaders 431
17.1 The design of Space Invaders . 432
17.2 How it fits together . 433
17.3 Peripherals . 434
17.4 Video . 436
17.5 Logic board . 443
17.6 Simulation . 446
17.7 Summary . 450

18 Compucolor II 451
18.1 Design . 451
18.2 A Minimal Viable Compucolor II . 454
18.3 Detailed rendering with SDL . 461
18.4 Video hardware . 467
18.5 TMS 5501 . 484
18.6 Keyboard . 499

iv

18.7 Floppy drive . 503
18.8 Cycle-count accuracy . 517
18.9 Slowing down the CPU . 521
18.10 Our complete computer . 524
18.11 Summary . 526

Parting words 527

Index 529

v

Introduction

Preliminaries

In this book, we are going to assume at least intermediate level familiarity with
Haskell. We will feel free to use many of GHC’s general-purpose language exten-
sions like DataKinds or TypeApplications, without introducing them. In fact, Clash,
the main tool we will use throughout this book, turns on these (and many more)
extensions by default. On the other hand, Template Haskell, being a more special-
ized tool that is not necessarily used by, the working Haskell programmer, will get
its own introduction before using it in anger in chapter 14.

We take a similar approach to libraries: we will use Containers, the Monad

Transformer Library, and small parts of Lens, assuming readers are either already
familiar with them, or can look up the documentation as needed. Libraries for
more niche domains, such as Barbies for easier handling of higher-kinded data
types, Terminal for text IO, and SDL2 for interactive, graphical applications, are
described in detail alongside the parts of the book that use them.

Notation

In text, monospaced typeface denotes code fragments; the most common case is
referring to Haskell types and functions by name, such as Bool or fmap. For the
actual definitions that make up our programs, we will use code blocks like this:

succIdx :: (Eq a, Enum a, Bounded a) => a -> Maybe a
succIdx x | x == maxBound = Nothing

| otherwise = Just $ succ x

Due to the limitations of paginated media, code blocks sometimes necessarily
spread across page boundaries. Good code should tell a story, so in these situations,
the cliffhangers get their own “to be continued” title card by drawing the code
block’s frame dashed, as in the following example:

predIdx :: (Eq a, Enum a, Bounded a) => a -> Maybe a

1

Introduction2

predIdx x | x == minBound = Nothing
| otherwise = Just $ pred x

Sometimes, we will build function or data type definitions piecewise over sev-
eral blocks. In these cases, we will indicate where later parts are to be inserted,
by including some of the previous code. Readers are very much encouraged to
follow along by assembling the program from the parts and experimenting with
the incomplete intermediate steps, not just looking at the final version.

In illustrations, since we are creating hardware by writing code, the role of the
schematic diagrams is just to provide overview. We will include more or less detail
in these diagrams in different contexts. When we want to highlight the distinction
between purely combinational circuits vs. stateful ones, we will enclose the pure
parts in rounded shapes, like the not circuit in the following example:

not

clk

reg

r

r'

When the details of memory access are the focus of discussion, we will draw
separate connections for address, read, and write lines. In other contexts, we will
keep our diagrams easier to read by using a single connection, denoting the read-
only, write-only, or read/write access by the direction of the connection:

CPU

Address

RAM
Read
Write

(1) Detailed memory connections

CPURAM

(2) Simplified memory connection

Resources

The website of this book is at https://unsafePerform.IO/retroclash/ with links to
repositories of the full source code of all programs appearing in the book.

https://unsafePerform.IO/retroclash/

Introduction 3

Acknowledgements

I don’t know if it takes a village to write a book, but a village certainly came together
for this one.

Even before the idea of writing a book, I’ve been regularly bouncing my in-
creasingly hare-brained schemes of describing hardware with all the abstractions
afforded by Haskell with Marten Ågren,NguyễnHữuHải, and Raphael Montelatici.
Hải originally put the bug in my ear that I should tell not just them, but the whole
world about these ideas.

Once I got to writing, Christiaan Baaĳ supported this endeavor from the get-go.
The whole Clash development team and QBayLogic got busy to fix the various
bugs I’ve uncovered on the way with very quick turnaround. Christiaan, Cosette
Reczek, Andor Pénzes, Ellie Hermaszewska, Viktória Kiss, and Miëtek Bak provided
invaluable feedback on the chapters as I wrote them. I have only myself to blame
for any errors that might still have slipped through.

Károly Lőrentey helped me enter the world of typography beyond “whatever is
default in LATEX”, and Viktória had great ideas for how to turn some of the concepts
in my head into illustrations. I am also indebted to TEX.stackexchange.com in their
assistance in turning these ideas into reality.

. . .

But before any of that, there was my father, bringing first an Atari 2600 home,
then a short while later, a Commodore 64. Followed by countless nights figuring out
Impossible Mission 2, and countless days designing BASIC programs and drawing
sprites of red balloons on graphing paper. He would have enjoyed — not the
technical details — but certainly the idea of this book.

https://tex.stackexchange.com/

1Into the world of FPGAs

This book is about the intersection of FPGAs, retrocomputing, and Haskell; ap-
proaching the topic from the direction of Haskell. In other words, we expect readers
to be familiar with traditional (software) programming in Haskell, and will concen-
trate on the hardware aspects. This chapter’s goal is to introduce FPGAs, and to
make our argument for picking retrocomputing as our topic.

1.1 Computers everywhere

We are surrounded by computers. Smartphones are computers. Gaming con-
soles are computers. Smart TVs are computers, but so are “dumb” ones as well.
Washing machines are computers. Bluetooth headphones are computers, as are
non-Bluetooth noise canceling ones. Computers are computers. In fact, computers are
surrounded by smaller computers in their peripherals: there’s a computer in the
keyboard, there’s one in the mouse, and there’s one in the network adapter.

If everything is a computer, does that make the term meaningless? No. What
we mean by the word “computer” here is an artificial physical device designed to
implement a finite approximation of a Turing machine. There are many proposed
ways of building devices that perform computation: we can build a computer from
water running through an elaborate network of pipes; we can synthesize organic
molecules whose interaction corresponds to computation; there are even children’s
toys in which a ball falling through a lattice of pins and spindles can perform
universal computation achieving Turing-completeness.

However, there is only one substrate of computation that sees real-world use:
digital electronics. If we look at all these computers around us as physical artifacts,
we see that they contain a bunch of functionality-specific parts (the drum of the
washing machine, the speaker of the headphone, or the LCD of the TV) and one or
more fiberglass epoxy boards (the printed circuit boards or PCBs) containing small
plastic boxes and electric components (mostly resistors and capacitors), with copper
traces running between the parts. To the naked eye, the epoxy boards look very
similar across devices, even though the washing machine is a lot less capable a

5

Chapter 1 Into the world of FPGAs6

computer than a smartphone.
Amazingly, this similarity runs much deeper. Resistors are resistors, capacitors

are capacitors, copper is copper, so the difference must be inside those small plastic
boxes, right? If we zoom in on the inside of one of those boxes, we find a tiny silicon
plane called an integrated circuit or IC for short. And if we zoom in much, much
more, we will see that on these planes, all ICs are made up of a large number of
components: a small portion is tiny versions of the resistors, capacitors, and other
electric components we’ve seen earlier, and the rest are transistors.

Different chips have different sized transistors; the rapid advancement in comput-
ing performance since the first computers is in large part because of improvements
in integrated circuit manufacturing. Newer transistors are smaller, use less energy,
and so more of them can be packed into the same area. But functionally, all these
transistors, large and small, are exactly the same: a tiny version of an electric switch
where being short or open is itself also controlled electronically.

What this means is that the difference between the microcontroller in a toaster
and the processor of a top-of-the-line supercomputer is only in how many of these
transistors are connected to each other, and what the connections are. The key
corollary is that we can build our own computer just by deciding on the connections.

1.1.1 Digital electronics

As the saying goes, in theory, theory and practice are the same, but in practice, they
are not. The above description of the insides of a computer is a gross simplification,
glossing over a lot of the electrical components. However, we are in good company
by making these simplifications: when we say that the computer is made of a
network of transistors and nothing more, we are using the digital abstraction.

The idea of digital electronics is to pretend that every transistor lead and every
pin visible to the outside world is always at one of only two voltage levels, referred
to as “low” and “high” voltage. Of course, nature is messy, and it takes considerable
electrical engineering effort to maintain this abstraction. In fact, for purely digital
circuits, the role of everything else on the circuit board (resistors, capacitors, etc.) is
to ensure that the digital abstraction isn’t leaky.1

In this book, we will stay firmly inside the confines of the digital abstraction.
When interfacing with the rest of the world, we will assume that the peripheral
hardware contains sufficient circuitry to solve impedance mismatches, translate
between voltage levels, and so on.

1There are also circuits where the functionality is intrinsically tied to non-digital electronics, e.g. a
radio receiver. Here, we regard those parts in the same way as we regard the heating coil of a toaster: a
peripheral that interfaces with the digital parts, but isn’t part of the “computer” proper.

1.1 Computers everywhere 7

1.1.2 Universality

From two transistors, we can build a NAND gate: a two-input, one-output cir-
cuit where the output is the complement of the two input’s conjunction (the
name “NAND” stands for “NOT-AND”); in Haskell notation, we could write it as
\x y -> not (x && y). By using enough NAND gates, we can implement any func-
tion mapping 𝑛 Boolean inputs to 𝑚 outputs. This property of the NAND gate is called
universality.2 By way of example, the following circuit diagram implements a NOT
gate from a single NAND gate; armed with NOT and NAND, we can directly implement
all the usual binary Boolean functions, since e.g. x AND y = NOT (x NAND y) and
x OR y = NAND (NOT x) (NOT y).

NANDx z

(1) z = NOT x

NAND

x

y
NOT z

(2) z = x AND y

NAND

NOTx

NOTy
z

(3) z = x OR y

In most devices, however, the outputs are not purely a function of the inputs:
there is also some internal state. By wiring together four NAND gates in a crossover
configuration, we can create a so-called latch: a circuit with two inputs (data and
enable) and one output where the output “remembers” what its data input was the
last time the enable input was high:3

2For any given concrete function, it is entirely possible that we can design a circuit that implements
that function using fewer transistors than the one built from NAND gates. The point here is that via the
NAND gate’s universality, we can show that any function can be built just by wiring together transistors,
without needing any other components.

3More specifically, this configuration is called a D latch. Other latch types with slightly different
behavior are also used in circuit design; for example, an SR latch also has two inputs, but the output
“remembers” which of the two inputs was last seen high.

Chapter 1 Into the world of FPGAs8

NAND

d

NAND
e

NAND

NAND

q

Adding one more NAND gate, we can build a flip-flop: a latch that is triggered not
by a high enable input, but by the enable input (called the clock in this case) changing
from low to high. As we will see in chapter 4, clocks are essential to compositional
circuit design.

NAND

NAND

NOT

d

clk

NAND

NAND

q

To summarize, it is possible to build this tower of abstractions where the higher
levels correspond to the purely functional and the stateful parts of a given device’s
intended behavior, but at its foundation, everything is built up of the same basic
element of the NAND gate.

1.2 Field-programmable Gate Arrays

The rest of this book is about building even higher abstractions to make it manage-
able to design large circuits that implement complicated behavior. But once we have

1.2 Field-programmable Gate Arrays 9

such a design, how are we going to turn that into physical hardware?
As we have seen, one solution would be to climb all the way down into the

world of transistors, and wire them together. This is exactly what happens in
traditional chip design: the output of the development work is the placement and
connection of every single transistor, in a blueprint that is then shrunk down onto
silicon wafers. The high-level design happens within the confines of the digital
abstraction, but since the end result is a physical artifact, it will be subject to all laws
of physics, not just the ones we’d like to apply: part of the design work is to address
the electrical requirements of maintaining the digital abstraction. The cost of a full
roundtrip from design to physical chip is enormous: depending on the details of
the manufacturing process, it can cost millions of dollars. This is very different
from the world of software, where a full from-scratch compilation of a program is
essentially free.

The alternative is to develop using a so-called field-programmable gate array, or
FPGA for short. As the name implies, an FPGA is a large number of logic gates
where the connections between the gates can be set “in the field”, i.e. after the
manufacturing process. From the outside, an FPGA looks like any other fixed-layout
chip, but internally, the connections between the gates are configured electronically
from an uploaded schematic. Trying out a new design is as simple as recompiling
the design into its low-level gate-by-gate representation, running a tool that creates
a circuit layout confirming to the intended connections, and uploading this new
layout. Functionally, it’s like having our own chip factory!

The compromise in FPGAs is that the programmable interconnects are much
more complicated than fixed traces: they use up some of our transistor budget. The
consequence is that an FPGA is more expensive (per unit) and uses more power
than a purpose-built chip. It is also not quite a standalone component: since the
whole point is to keep the configuration dynamic, external support elements are
needed to provide the programming at power-up.

These drawbacks are less relevant to us in this book:

• Unit cost: we are not interested in designing for manufacturing, but in creating
one-off circuits. Furthermore, our designs are simple and small enough that
they use a small number of components, fitting onto low-tier hobbyist FPGAs
instead of the expensive, top-of-the-line, very fast, very large offerings.

• Power consumption: we will not design for embedded applications, and be-
cause we will be implementing old computers that were very slow compared
to today, our designs will not need to run anywhere near the power/heat
limits of today’s FPGAs.

• Supporting circuitry: tying back to building one-offs, we will use pre-made
development boards instead of designing our own purpose-built PCBs around

Chapter 1 Into the world of FPGAs10

bare FPGA chips. These off-the-shelf development boards contain everything
needed to make the FPGA work, freeing us up to care only about the circuit
design inside the FPGA.

1.2.1 From design to a network of NANDs

Suppose we design a circuit that has 16 inputs and 25 outputs: the inputs are
grouped into two 8-bit numbers x and y, and the output consists of the bits of
(complement x, complement y, x + y). The third component of the output, x + y,
is 9 bits long, to account for the possibility of carry.

We have already seen how to use one NAND gate per bit for the complement. For
the addition, we start with adding just two one-bit values: the so-called half adder:

XOR

x

y

AND

z

c

To extend this to multiple bits, we need a way to propagate the carry outputs
from lower bits to higher ones. A full adder has an additional third input for the
carry-in, i.e. the carry-out from the lower bit-pair:

ADD

c

z

x

y

ADD

c

z

c

OR c'

z

We can build circuits for AND, OR, and XOR using 2, 3 and 4 NANDs respectively.
This gives us a total NAND count of 6 for the half-adder, and so 15 for the full adder.
Alternatively, by breaking the abstractions, we can use just 9 NAND gates to implement
the same functionality (in this diagram, every gate is a NAND gate, so we omit labels
to save on space):

1.2 Field-programmable Gate Arrays 11

x
y

z

c

c'

Regardless of which implementation we use for our full adder, we can then
build the 8-bit adder by connecting 8 of our full adders in a so-called ripple-carry
configuration:

ADDc

z

x0 y0

z0

ADDC cc'

z

x1 y1

z1

. . .ADDC cc'

z

x7 y7

z7z8

We are now ready to assemble our complete circuit, using the components
defined above:

8xNOT
8

8xNOT
8

ADD8
9

8

8

Chapter 1 Into the world of FPGAs12

The slashes on the lines here emphasize the fact that each line actually corre-
sponds to multiple (8 or 9) wires. Pretending that we have “wide” (multi-bit) lines
(called buses) is a very useful abstraction in avoiding clutter. In fact, it is so useful,
that in the rest of this book we will use it all the time without using these bus marker
slashes to distinguish them; one-bit lines will be thought of as degenerate buses that
just happen to be one-bit wide.

What this final image tells us is that we can take 8 · 1 + 8 · 1 + 8 · 9 = 88 NAND
gates, connect them in the configuration that we see when all the abstract boxes
are inlined, and the resulting 16-input 25-output circuit will implement our desired
behavior.

1.2.2 Lookup tables as basic elements

Since the complicated part of an FPGA is the electronically configurable routing
between elements, and of course the more elements we have, the more routing is
needed between them, it makes sense to reduce that complexity by using fewer,
larger elements. This is why FPGAs are not called field-programmable transistor
arrays: although everything is built from transistors, the basic unit of addressing
is not a single transistor, but larger elements built from it. The idea is that for any
circuit we would actually want to design, it will have a lot more structure than just
a network of transistors.

Looking at our previous example, suppose we also have NOT gates as basic
elements, still implemented with a single NAND gate internally. While this doesn’t
save on the total number of NAND gates, it does cut down on the number of junctions:
in contrast to a NAND element that has three leads connected in a certain way to
implement a NOT gate, a dedicated NOT element only has two leads. Thus, for the 16
NOT gates, the number of junctions goes down from 16 · 3 = 48 to 16 · 2 = 32.

We can save a lot more junctions if we also have full adders as basic elements,
since now we only need routing between 16+8 = 24 elements instead of the original
88.

In this hypothetical example, the reduction in routing was achieved by the design
of the circuit matching the underlying FPGA’s structure perfectly: the FPGA had
NOT gates and full adders as basic elements, and our circuit trivially decomposed
into complements and addition. But the whole point of an FPGA is to be versatile.

The answer to this seeming contradiction is to make the basic elements them-
selves configurable. On an FPGA, instead of using fixed-function gates like NOT or
ADD, each basic element is a tiny piece of memory called a lookup table (LUT for short)
that is initialized together with the inter-element connections. For example, if each
element is a memory with 3 address bits and 2 data bits, we can put a 3 × 2 lookup
table into it. That is good for two NOT gates, or one full adder.

1.2 Field-programmable Gate Arrays 13

In the following diagram, the 2xNOT, ADD, and ADDC blocks all refer to 3 × 2 LUTs
loaded with the truth table of two parallel NOT gates, a half-adder, and a full adder,
respectively. Unused inputs and outputs (such as the third input of a 2xNOT element)
are omitted.

ADD

2xNOT
x0

y0

ADDC

2xNOT
x1

y1

...

ADDC

2xNOT
x7

y7

So now we can take just 8 + 8 = 16 elements to implement our circuit, without
requiring the FPGA to be designed with prescience to our intended use case. On the
other hand, we have now introduced additional complexity to the design process
itself. Although our problem statement was “the bits are complemented”, we now

Chapter 1 Into the world of FPGAs14

need to group that into two-bit units just to get better resource utilization. Then
a new FPGA model comes out with 3-output basic elements, and now we need to
rework our design to take advantage of being able to put three NOT gates on one
lookup table.

What happens in practice is that the details of lookup table dimensions and
routing distances are hidden from the developer, and handled by vendor- and
model-specific toolchains. We write our circuit in terms of one-bit NOT gates, and
let the compiler (commonly called synthesizer in the FPGA context) figure out the
nicest way to map that onto the elements available on our target FPGA.4

1.2.3 FPGAs as hardware gadgets

Now that we have an idea of what goes on inside an FPGA, what is it actually, as
a physical device? Although we include many simulators in this book, ultimately,
the payoff is in synthesizing and uploading the designs into FPGAs. So what does
that look like?

For development purposes, our best bet is to get an FPGA development board
aimed at educational uses: a standalone hardware gadget that contains the FPGA;
its support components such as flash ROM that will store its configuration between
power cycles; some hardware peripherals like pushbuttons, toggle switches, LEDs,
or seven-segment displays; connectors in standard format for further peripherals
like USB for input devices or VGA for video output; a USB connector to upload the
synthesis result from a computer; and some way of powering the board when not
connected to a computer, usually in the form of a micro-USB socket or simple DC
input.

Development boards are useful for us because they take care of all the electronic
concerns that are outside the scope of this book. For example, lighting an LED on
the board is as simple as setting the appropriate output pin’s value to high, without
having to worry about voltage levels and making sure the current won’t be too large
to fry the LED. They are also satisfyingly tactile: unlike a PC expansion card, we can
hold the whole thing in our hands, disconnect it from the programming computer,
and enjoy that it really is a standalone circuit that does everything by its own power.

1.2.4 Toolchains

In the software development world, we are used to open source, standardized
compiler toolchains. Unfortunately, this is not at all the case for FPGAs. Each FPGA

4Just like in software, squeezing out the maximum performance sometimes requires reaching
through abstractions and taking into account the specifics of the target device. One advantage of re-
producing old computers is that in this book, we will not get even close to needing to do that.

1.3 Retrocomputing 15

vendor provides its own synthesis toolchain, containing a ton of model-specific
knowledge.

The normal way of interacting with the toolchain is by writing the circuit de-
scription in a hardware description language (commonly abbreviated as HDL). The
two big players in this space are VHDL and Verilog: both have IEEE standards
describing them. The VHDL or Verilog input is then processed by vendor-specific
tools, mapping parts of the circuit to various elements of the given FPGA model,
and then producing an opaque binary blob called a bitfile, which can be uploaded
with an (again, vendor-specific) tool to the FPGA.

Since all intermediate representations are non-standard and proprietary, any-
thing we want to do will have to go via HDL. We can think of the situation similar
to how we can use any programming language to run in the browser, as long as it is
JavaScript. If we want to use some other language, our program has to be translated
to JavaScript. This translation can be simple and direct, with the output being in
direct correspondence with the input (e.g. TypeScript); or it can be very involved, as
in the case of GHCJS that compiles Haskell into JavaScript.

Due to this non-standard, highly vendor-specific nature of the development
environments, in this book, we will not look beyond creating the HDL source (and
we will not even write any HDL by hand), and will assume the reader has read
up on the specifics in the documentation provided with their FPGA development
boards.

1.3 Retrocomputing

The motivating examples in this book all fall into one of two categories: simple
circuits that demonstrate a single functionality, and complex, fully-worked-out sys-
tems based on old computers. “Old” can mean different things to different people;
for us, it means the time period when computers just started entering the lives of
everyday people: the late seventies arcade machines and home computers.

It would be a lie to say that this choice has nothing to do with the author’s age and
childhood. However, there are two objective benefits to studying old computers:

• CPUs and computers that were considered simple and cheap even in their
own time were designed by very small teams, sometimes individuals. This
makes it possible to understand them holistically.

• The performance gap between then and now is so large, that we can get
something working without having to worry about doing everything the most
efficient way. The goal of this book is not to train professional hardware
designers, but to learn about quaint old computers and to write down what

Chapter 1 Into the world of FPGAs16

we learn in code that is not only functionally correct, but also nicely readable
and concise for humans.

None of the techniques explored in this book are specific to retrocomputing;
however, there are certainly some modern areas we don’t venture into. As an
example, we never even consider pipelined CPU designs.

1.4 Haskell meets Hardware

Since Verilog and VHDL, the two standardized hardware description languages, are
the lingua franca of FPGA toolchains, if we want to use Haskell as a “better HDL”,
we need a way to meet the toolchains on their own turf. The two approaches to this
are as an embedded DSL (e.g. Lava), or as a compilation target (e.g. Clash).

1.4.1 Lava

In the Lava approach5, the role of Haskell is that of a macro language: the library
provides types corresponding to circuit fragments, and combinators over these
types, and the ambient Haskell language can be used in building abstractions for
how these fragments are put together. Internally, signals are represented as data
that describes their definitions; to create the HDL output, we write a Haskell pro-
gram that uses the Lava entry point that traverses that description for the value
representing our complete circuit design, and then when we run that program, it
writes out a file containing Verilog or VHDL source.

Because the primitives exposed by Lava correspond directly to the primitives
of the target HDL, it is easy to track provenance of the output. Error messages, or
results from downstream testing tools, are straightforward to interpret in the context
of the source code. Of course, this correspondence becomes less straightforward as
the Haskell code that generates that final circuit value becomes more involved; but
even then, since the HDL output is created by running our program, we can use
Haskell-runtime debugging tools to do further tracking.

Pushing further, since we have a Turing-complete macro language with rich types
in the form of Haskell, we can fully automate source code creation, for example by
writing an interpreter from our own high-level description into Lava code. Since
the interpreter runs before the output HDL is consumed, there is no limitation in
the structures that can be generated, and no interpretation overhead in the resulting
HDL.

On the flip side, Lava is a first-order language over primitive HDL types only.
We can use arbitrary Haskell types to drive our macro code, but the result is com-

5There has been several dialects of Lava since its original 1998 paper, resulting in a whole family of
implementations. At the level of granularity in this chapter, they can all be regarded as the same.

1.4 Haskell meets Hardware 17

pletely disconnected from these types. For example, there is no concept of defining
algebraic datatypes, or pattern matching on them, in Lava. There is no way to lift
functions on pure values to functions on signals, short of generating a small ROM
containing the complete graph of the function as a lookup table.

1.4.2 Clash

The Clash approach uses GHC as a compiler frontend, consuming its Core interme-
diate language, inlining definitions to dissolve recursion, and mapping the result to
HDL constructs. In this model, we write straight Haskell code, and then compile it
with Clash instead of GHC.

This results in the ability to use all features of Haskell in our circuit descriptions.
Our circuits can be pure functions, or, if state is needed, we use the built-in Signal
type constructor, which is an applicative functor, allowing pure Haskell function
definitions to be lifted to the world of signals. Signals can contain arbitrary Haskell
types: the Clash compiler applies supercompilation techniques to get rid of in-
termediate signals of non-representable contents. For example, in something this
simple:

(&&) <$> xs <*> ys

the result of (&&) <$> xs is of type Signal dom (Bool -> Bool), but we don’t need
to worry about time-varying functions, since the full term is a Signal dom Bool
where the function is statically known to be the logical-AND function.

One drawback of this methodology is that some generalizations require quite
involved type-level programming, compared to the Lava/DSL approach where ul-
timately, we’re stitching together term-level HDL fragments. We will see quite early
in this book that for most uses, lists have to be replaced by length-indexed vectors,
to ensure they can be manipulated with circuits of statically known size. In chap-
ter 14, we will also encounter a situation where Clash’s supercompilation technique
is simply not sophisticated enough to deal with certain recursively defined, but
finite, circuits.

Nevertheless, this book puts its vote down firmly for Clash. One reason for
this is that the intended audience is already familiar with Haskell and regards the
type-level programming bits as fun and not scary at all. The second reason is that
algebraic datatypes and pattern matching are simply too painful to live without.
Starting at chapter 6, most of our circuit design will be based on translating input
signals into a circuit-specific datatype, and consuming values of that datatype in
the main state transition function.

2Hello, Clash!
In this chapter, we will write our first Clash program to connect some simple inputs
to simple outputs. “Simple” here means that the digital signal connected to the
FPGA’s pins correspond directly to the peripheral’s state. For example, a two-state
switch connected to an I/O pin will pull that pin to either low or high depending
on the position of the switch. Similarly, an LED is either on (lit up) or off (dark).
Later, we will interface with more complicated peripherals that require coordination
between multiple pins and/or through time.

Most FPGA development boards have some pushbuttons, switches and LEDs
directly accessible from the FPGA; for those that don’t, we can use a breadboard to
connect these components as standalone parts to the so-called general purpose I/O
(GPIO) pins of our board.

2.1 Bit

Digital signal levels are represented by the Bit type in Clash. It has two values
low and high, conversion functions boolToBit and bitToBool, and is an instance
of standard Haskell typeclasses like Eq, Ord, Show, Bounded, and Enum. It is also an
instance of Num as modulo-2 arithmetic, and Bits/ FiniteBits in the straightforward
way.

In this book, we will make an effort to keep Bool and Bit separate. For example,
the signal level corresponding to a pushbutton connected to an I/O pin is a Bit, but
whether the button is pushed or not is a Bool. Depending on how the pushbutton
is wired in a given circuit, either high or low could be mapped to True. This can get
tricky to track properly, so we will also define a newtype wrapper around Bit that
tracks its polarity:

data Polarity = High | Low

newtype Active (p :: Polarity) = MkActive{ activeLevel :: Bit }
deriving (Show, Eq, Ord, Generic, NFDataX, BitPack)

19

Chapter 2 Hello, Clash!20

active :: Bit -> Active p
active = MkActive

This allows conversion of signal levels to logical Bool values, either by direct
conversion (for Active High) or by taking the complement (for Active Low):

class IsActive p where
fromActive :: Active p -> Bool
toActive :: Bool -> Active p

instance IsActive High where
fromActive = bitToBool . activeLevel
toActive = MkActive . boolToBit

instance IsActive Low where
fromActive = bitToBool . complement . activeLevel
toActive = MkActive . complement . boolToBit

2.2 Signal

The Signal type represents time-varying values. Clash’s model of time is discrete
and synchronous: at every time step, all signals have some value and then in the
next time step, all signals are updated. In Clash’s simulator, signals are turned into
streams (represented as infinite lists), with every element corresponding the the
signal’s value at a given timestep.

Signal is parameterized by the clock domain that a given signal belongs to. Clock
domains are important because crossing over a signal from one domain to another
requires special care. For example, imagine one domain operating at 100 MHz and
another one at 1 MHz. If a signal in the faster domain changes value for a single
(10 ns) cycle, and something is derived from it in the slower domain, what should
happen during the whole 1 𝜇s cycle of that domain? There is no single, general,
good answer to this. By tagging signals with their clock domains, Clash enforces
that only signals in the same domain can be connected without explicitly taking
care of these issues.

2.3 Our first circuit

Armed with just Bit and Signal, we can now write our very first Clash program in
just three lines:

2.3 Our first circuit 21

-- This is the Clash equivalent of the Haskell Prelude
import Clash.Prelude

-- What `main` is for a Haskell program, `topEntity` is for Clash.
topEntity :: Signal System Bit -> Signal System Bit
topEntity = id

This defines a circuit which takes as input a one-bit signal, and returns it. Note
the type of topEntity: it is a function from the Signal that represents the input to
a Signal representing the output. Even though our circuits in this chapter are not
going to be clocked (we’ll learn about clocks in more detail in the next chapter), we
still need to pick some clock domain, so we’ll use System, which is defined for us in
the Prelude.

If we connect a pushbutton to the input and an LED to the output, we get a
simple electronic device that lights up an LED as long as the button is pressed. Or,
depending on the wiring of the LED and the pushbutton, maybe it is going to light
up the LED as long as the button is not pressed.

2.3.1 Simulation

In its present form, we can’t load this configuration onto a real FPGA board yet;
we’ll see shortly what else we need to add. But we can already play around with
this circuit in the Clash simulator by loading it into the interpreter clashi, the Clash
equivalent of ghci:

$ clashi Hello.hs
Clashi, version 1.4.2 (using clash-lib, version 1.4.2):
http://www.clash-lang.org/ :? for help
Ok, one module loaded.

As far as the Clash simulator is concerned, topEntity is a bona fide function, so
we can apply it on an argument of type Signal System Bit:

> :t topEntity
topEntity :: Signal System Bit -> Signal System Bit

One way of getting our hands on a Signal System Bit value is to simulate a
certain fixed sequence of events specified as a [Bit]. Let’s see how our circuit
would behave if we waited for two time steps, then pressed the button for one time
step:

Chapter 2 Hello, Clash!22

> let input1 = fromList [low, low, high]
> topEntity input1
0 0 1 *** Exception: X: finite list

Simulation failed after three clock cycles for the very simple reason that our input
was only specified for three cycles. Let’s fix that by appending infinitely repeating
low values to our list:

-- we import Data.List qualified to avoid name conflicts with other
-- definitions exported by Clash.Prelude
> import qualified Data.List as L
> let input2 = fromList ([low, low, high] <> L.repeat low)
> topEntity input2
0 0 1 0
0 0
...

The simulation will run indefinitely, until the heat death of the universe, or until
we kill it with Ctrl + C ; whichever happens first. So far, this author has always
gone for the latter option.

Printing out the value of a signal timestep-by-timestep is useful for interactive
examination, which is a fancy way of saying eyeballing. If we want to process it
programmatically, it is usually a better idea to turn it into a list of values. This is
what sample and sampleN do; the first one returns an infinite list, while the latter
limits the simulation to 𝑛 steps.

> L.take 20 $ sample $ topEntity input2
[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
> sampleN 10 $ topEntity input2
[0,0,1,0,0,0,0,0,0,0]

Both sample and sampleN are lazy, so they will work with our finite-length input1
as well:

> L.take 3 $ sampleN 10 $ topEntity input1
[0,0,1]

2.3.2 Synthesis

Staring at signal traces in the simulator can be very useful, and in fact later on, we will
do all our debugging in the simulator (and various different levels of simulation!)
instead of on actual hardware. This is also how “real” ICs are developed, even more
so than FPGA configurations, since round-tripping via a chip fab is both slow and
expensive.

2.3 Our first circuit 23

But we’re here to put fun in functional programming! So let’s put simulation
behind us for a second, and try to get some LEDs on our FPGA dev board to light
up.

We could take our program as-is, and tell Clash to compile it into some HDL
we can then feed into our FPGA synthesis toolchain. However, because our input
and output signals are not named, the resulting HDL will use the Clash-generated
name c$arg for our input port and the more reasonable result as the output port.
By adding annotations to topEntity’s type signature, the Template Haskell function
makeTopEntity gives meaningful names to our I/O ports:

import Clash.Prelude
import Clash.Annotations.TH

topEntity
:: "BTN" ::: Signal System Bit
-> "LED" ::: Signal System Bit

topEntity = id

makeTopEntity 'topEntity

Note that the types of inputs and outputs are annotated with a type-level
string denoting the port name to use. Clash supports currying for multi-input
circuits; but the result type has to be a single type, since Haskell doesn’t have
multi-valued functions. Multiple outputs will have to be represented as a single
output of some tuple type; more on that later. In later code listings, we will skip the
makeTopEntity 'topEntity line.

We can use the meta-command :verilog in clashi to compile topEntity into
Verilog:1

GHC: Parsing and optimising modules took: 0.603s
GHC: Loading external modules from interface files took: 0.000s
GHC: Parsing annotations took: 0.000s
Clash: Parsing and compiling primitives took 0.249s
GHC+Clash: Loading modules cumulatively took 1.301s
Clash: Compiling Main.topEntity
Clash: Normalization took 0.012s
Clash: Netlist generation took 0.000s
Clash: Total compilation took 1.315s

1Why Verilog? Clash supports three mainstream Hardware Definition Languages: VHDL, Verilog,
and SystemVerilog. SystemVerilog is not supported by older versions of the Xilinx ISE, needed to
program popular FPGA dev boards such as the Papilio family, that are based on older Spartan-3 and
Spartan-6 FPGAs; and Clash doesn’t support VHDL for file-initialized ROM operations on Altera/Intel
FPGAs. We’ll be using Verilog throughout this book as the sweet spot.

Chapter 2 Hello, Clash!24

This will create a file verilog/Main.topEntity/topEntity.v. How this is syn-
thesized into FPGA configuration depends on what toolchain we use, which in turn
is determined by the vendor of the FPGA chip we are targeting. One common trait
among FPGA vendor tools is that they range from horribly painful to painfully hor-
rible. In this book, interaction with the FPGA toolchain is restricted to a minimum
by writing everything we can in Clash. However, mapping the port names such
as BTN and LED to physical FPGA pins needs to be done outside Clash. Different
toolchains, sometimes even from the same vendor, all have different formats for
describing that mapping; usually, the easiest is to find this so-called constraints file
on the dev board manufacturer’s website and then tweak it to our needs.

Supposing we got over that hurdle, in the constraints file we can use the name
BTN for one of the FPGA pins that is connected to a pushbutton on our development
board. Alternatively, if we don’t have a pushbutton, map BTN to a GPIO pin and
connect a stand-alone pushbutton component to it via a breadboard. Similarly, map
LED to a pin connected to an LED either directly, or via a breadboard. Then let
the synthesis tool do its job to generate a bitfile , which is what can ultimately be
uploaded to our FPGA.

2.3.3 Running on real hardware

Finally, we have our bitfile and are ready to upload it! The details of uploading,
again, are FPGA- and dev board-specific. Once it’s on the board, we can press
the button we chose in our constraint mapping, and observe the LED lighting up.
Release the button, and the LED goes out as well. Reactivity!

Or maybe it is happening the other way round: if the pushbutton is wired such
that it pulls the input low when pressed, but the LED is wired such that high turns
it on, then it will go out when the button is held. The next chapter will show that
Signal is an applicative functor, so we can use fmap complement to flip the input
Bit.

Either way, this is not quite blinkenlights yet: all the blinken is still missing!
Blinking requires state, which we will explore after the next chapter.

Exercises:

• Try out what happens if we change topEntity’s type to be
Signal System Bool -> Signal System Bool. Does its behavior change?
Does its intended meaning?

2.4 Summary 25

2.4 Summary

• Bit: signal level of a single digital line. low and high doesn’t necessarily mean
False and True. Active p keeps track of this.

• Signal: discrete & synchronous time-varying value. Type-tagged with its
clock domain.

• A Clash program’s main entry point is topEntity, mapping input Signals to
output Signals.

• Clash simulator converts between Signal and lists.

• Type-level port name annotation gives names to topEntity input and output
signals to interface with the outside world.

• Clash compiles Haskell into HDL, which is then consumed by some FPGA
toolchain to produce the bitfile containing the full FPGA configuration.

3Combinational Circuits are
Applicative Functors

Our first Clash program connected its one-Bit input directly to its one-Bit output.
But what if we want to do some processing in between? For example, what if we
want to flip the pushbutton’s behavior so that the LED lights up when the button is
released?

Circuits whose output can be described as a pure function of their inputs are
called combinational circuits. In the flipped pushbutton case, we can say that the LED
output is the result of applying the complement function on the button input.

3.1 Signal is an applicative functor

The idiomatic Haskell way to write the input-flipping circuit would be to use a
Functor interface, and indeed Clash’s Signal type is an instance of Functor:

topEntity
:: "BTN" ::: Signal System Bit
-> "LED" ::: Signal System Bit

topEntity = fmap complement

In fact, Signal is also Applicative, with pure being the constant signal and <*>
applying function-valued signal on argument-valued signals in lockstep at every
clock cycle. This allows us to make a more complicated circuit which only lights up
the LED if two buttons are pressed at the same time, using the Bits instance of the
Bit type to implement the actual conjunction:

topEntity
:: "BTN_1" ::: Signal System Bit
-> "BTN_2" ::: Signal System Bit
-> "LED" ::: Signal System Bit

topEntity btn1 btn2 = (.&.) <$> btn1 <*> btn2

This example also shows the support for curried functions for multi-input cir-
cuits: topEntity is a two-argument function, and both of its arguments are anno-

27

Chapter 3 Combinational Circuits are Applicative Functors28

tated with port names. To make a two-output circuit, for example showing the
conjunction of two buttons on one LED and their disjunction on the other one, we
can use a tuple in the result type. The resulting names will be LED_1 and LED_2:

topEntity
:: "BTN_1" ::: Signal System Bit
-> "BTN_2" ::: Signal System Bit
-> "LED" :::

("1" ::: Signal System Bit
, "2" ::: Signal System Bit
)

topEntity btn1 btn2 =
((.&.) <$> btn1 <*> btn2
, (.|.) <$> btn1 <*> btn2
)

Of course, tuple annotations also work on input arguments, allowing a slightly
more regular-looking version:

topEntity
:: "BTN" :::

("1" ::: Signal System Bit
, "2" ::: Signal System Bit
)

-> "LED" :::
("1" ::: Signal System Bit
, "2" ::: Signal System Bit
)

topEntity (btn1, btn2) = (both, either)
where
both = (.&.) <$> btn1 <*> btn2
either = (.|.) <$> btn1 <*> btn2

Before we move on to richer datatypes than Bit, it is perhaps worth
noting here that since the kind of Signal is Domain -> Type -> Type, tech-
nically it is not Signal, but Signal domain (for any given type-level index
domain :: Domain) that is an instance of the Applicative typeclass. This is exactly
how Clash makes sure clock domains are not crossed unwittingly: if we have
b1 :: Signal Domain1 Bit and b2 :: Signal Domain2 Bit, trying to compute
their conjunction as (.&.) <$> b1 <*> b2 is a type error.

3.2 BitVectors and Vectors 29

3.2 BitVectors and Vectors

Beside representing single digital signal levels, the Bit type has another important
role in Clash: values of certain datatypes can be taken apart into some set number
of bits. This property is captured by the BitPack typeclass:

class BitPack a where
type family BitSize a :: Nat
pack :: a -> BitVector (BitSize a)
unpack :: BitVector (BitSize a) -> a

Crucially, anything we want to use as input or output has to be an instance of
BitPack, since ultimately everything has to become a bundle of wires each carrying
a single digital 1-bit signal. This is not going to be a worry for us in this book: all
our Clash code will interface directly with the outside world, so everything will be
directly in terms of single bits or vectors of them.

The length-indexed type BitVector :: Nat -> Type shows up in the definition
of BitPack. A BitVector n is a vector of 𝑛 bits: the size is statically determined,
in this case, by BitSize a. For example, BitSize Bit is 1 as expected; and corre-
spondingly, BitSize (Maybe Bit) is 2. We can use the (!) operator to index into
a BitVector n, or anything else that has a BitPack instance, starting at the least
significant bit.

A more generic container for 𝑛-ary vectors of arbitrary element type is
Vec :: Nat -> Type -> Type. In many ways, this plays the same role in Clash as
[] :: Type -> Type in Haskell, as the bread-and-butter container type; in fact, the
Clash Prelude binds familiar names like zipWith, (++) or map to their Vec version.

In a computer program, traversing a list is something that can be done element by
element without knowing at compile-time how long the list is going to be. However,
in a hardware circuit, transforming an 𝑛-element vector requires 𝑛 sub-circuits
whose outputs are bundled together to be taken as the result, so the length needs
to be statically known to lay out the correct number of parts. This also means
that while we can (and should!) write length-polymorphic functions, everything
will need to have a concrete known length when accessed through the main top-
level definition. Vec can also be used at our circuit’s boundaries, since Vectors of
BitPackable elements are BitPackable themselves.

As an aside, in later chapters we will see how to sequence steps and how to create
RAM. With these tools, it is going to be possible to “process a list elementwise”, but
at a very different level of abstraction than just fmap f someVector.

Chapter 3 Combinational Circuits are Applicative Functors30

3.3 Controlling many LEDs

Armed with Vec, we can write a circuit that controls many LEDs with many buttons.
We’ll use 8 inputs to drive 8 LEDs. This works with dev boards with more periph-
erals as well, since unused buttons and LEDs are simply not going to be connected
to anything.

If your dev board has two-state switches, I recommend using those instead of
pushbuttons for this coming example, unless you are an octopus.1

topEntity
:: "SWITCHES" ::: Signal System (Vec 8 Bit)
-> "LEDS" ::: Signal System (Vec 8 Bit)

topEntity switches = reverse <$> switches

Hopefully no surprises here: the name reverse here of course refers to the
function that operates on Vecs instead of lists.

Note that we have a single input port and a single output port, but both has a vector
type. This works out because Verilog and VHDL support so-called buses: “wide”
wires carrying multiple signals in parallel. Buses are a purely virtual construct, the
outside world still only sees single pins, so the constraint files has to map individual
pins to individual wires of a given signal. The exact syntax for this, again, varies
slightly between FPGA toolchains, but it is going to look something like SWITCHES<0>
or SWITCHES[0]. Buses are 0-indexed, so the above example will need both SWITCHES
and LEDS mapped up to 7.

Synthesizing and uploading this program to our dev board should give us a
new toy that turns LEDs on or off with switches. If we didn’t use reverse, we could
have used BitVector 8 in our input and output types, but most Vec functions have
no equivalents for BitVector. In this book, we are only going to use BitVector in
cases where we want to reinterpret between different, BitPackable representations;
collections of bits as a data structure will be represented as Vec n Bit instead.

3.3.1 Taking buses apart and putting them back together: the Bundle type-
class

The Functor interface to Signal makes it possible to take a signal containing many
things and turn it into many signals. For example, we can take a bus of a 2-tuple
into its two components:

1Latest Clash developer survey showed a minuscule ratio of octopus users compared to humans.

3.3 Controlling many LEDs 31

unbundleTuple
:: Signal dom (a, b)
-> (Signal dom a, Signal dom b)

unbundleTuple bus = (fst <$> bus, snd <$> bus)

We can do the same for vectors as well. Since vectors are length-indexed, we
have to do a bit of type-directed programming to generate the vector of indices
⟨0, 1, . . . , 𝑛 − 1⟩ by iterating the successor function 𝑛 times, using iterateI from the
Clash Prelude.2

unbundleVec
:: (KnownNat n)
=> Signal dom (Vec n a)
-> Vec n (Signal dom a)

unbundleVec bus = map (\i -> (!!i) <$> bus) indices
where
indices = iterateI (+1) 0

Moreover, Signal is also Applicative, giving us a way to put it back together.
For tuples, we can do it directly:

bundleTuple
:: (Signal dom a, Signal dom b)
-> Signal dom (a, b)

bundleTuple (fsts, snds) = (,) <$> fsts <*> snds

and for Vec n, we can take advantage of the fact that the latter is Traversable (if
only 𝑛 ≥ 1), by using sequenceA:3

bundleVec
:: (KnownNat n)
=> Vec n (Signal dom a)
-> Signal dom (Vec n a)

bundleVec Nil = pure Nil
bundleVec xs@(Cons _ _) = sequenceA xs

That is a lot of code for something that does so little! In fact, all these functions
should be doing nothing at all: the signal values are not changed by them, only their
geometry. It should come as no surprise that we don’t need to write any of the

2Clash also has indicesI :: (KnownNat n) => Vec n (Index n); we are implementing indices our-
selves here purely for educational reasons.

3We are using Cons here instead of :> like everywhere else, due to a subtle Clash bug. See https://gi
thub.com/clash-lang/clash-compiler/issues/867 and https://github.com/clash-lang/clash-compiler/pull/966
for the details.

https://github.com/clash-lang/clash-compiler/issues/867
https://github.com/clash-lang/clash-compiler/issues/867
https://github.com/clash-lang/clash-compiler/pull/966

Chapter 3 Combinational Circuits are Applicative Functors32

above code: the Clash Prelude comes with a typeclass called Bundle that gives us
an overloaded version of bundle and unbundle.

class Bundle a where
type Unbundled (dom :: Domain) a :: Type

= res
| res -> dom a

bundle :: Unbundled dom a -> Signal dom a
unbundle :: Signal dom a -> Unbundled dom a

We can now write a version of our LED strip demo that computes each element
of our resulting vector separately, before bundling them up into a vector.

topEntity
:: "SWITCHES" ::: Signal System (Vec 2 Bit)
-> "LEDS" ::: Signal System (Vec 4 Bit)

topEntity switches = fmap (map boolToBit) . bundle $
both :> either :> onlyOne :> onlyTheSecond :> Nil

where
sw1 :> sw2 :> Nil = unbundle $ map bitToBool <$> switches

both = sw1 .&&. sw2
either = sw1 .||. sw2
onlyOne = sw1 ./=. sw2
onlyTheSecond = (not <$> sw1) .&&. sw2

Here, we used .&&., .||. and ./=. which are Signal-lifted versions of &&, || and
/=.

Exercises:

• Rewrite LEDStrip2 using the ApplicativeDo language extension

• LEDStrip2 is, of course, still a combinational circuit. Rewrite it without using
bundle / unbundle, in the form of f <$> switches.

3.4 Seven-segment display

A segmented LED display is a bunch of LEDs arranged in multiple line segments in
a layout that allows drawing interesting patterns that can be recognized as digits or
letters. By far the most common setup is seven segments and everyone knows them
from basic calculators, where the same layout is used in LCDs. Other displays use
14 or 16 segments by adding diagonals and breaking up the horizontal segments
into two parts.

3.4 Seven-segment display 33

In this section, we will write Clash code to interface with a seven-segment LED
display — commonly found on FPGA dev boards — to show a four-bit number as
a single hexadecimal digit.

3.4.1 How a seven-segment LED display works

The fundamental idea behind a seven-segment LED is to be able to turn on or off
each segment separately. So each segment gets its own LED, and each LED has
a separate pin to the outside world. Of course, you actually need two leads for
each LED, but keeping one of them constant and changing the other is enough to
turn them on or off. Thus, seven-segment LEDs are either common anode or common
cathode for a total of 8 pins (9 if there is also a decimal point).

On a common anode device, to display anything, the shared anode pin needs
to be set to high and individual segments can be turned on by setting their pins to
low. Setting a segment to high turns that segment off, and setting the shared anode
to low turns the whole display off, regardless of the individual segment pins, since
LEDs only light up if the voltage across them has the right direction. On a common
cathode device, everything is reversed: the display is on if the shared cathode is low
and individual segments are high.

In our code, we will represent the segments as a Vec 7 Bool, and convert that to
active high or active low representation at the edges, using toActive.

As for mapping the segments themselves, on seven-segment display manufac-
turer’s datasheets the segments are usually labeled a to g in a spiral sequence:

a

b

c
d

e

f
g

abcdefg

0b1001110

0b0001110

0b1110111

0b1011011

0b0110111

The following function takes the state of the seven segments and renders it using
ASCII art. This is going to be useful for debugging in the Clash simulator. Note
that we are using list functions and Strings freely here, since this is not meant to be
synthesized: this is plain-old Haskell code here.

Chapter 3 Combinational Circuits are Applicative Functors34

import Clash.Prelude
import qualified Data.List as L

showSS :: Vec 7 Bool -> String
showSS (a :> b :> c :> d :> e :> f :> g :> Nil) = unlines . L.concat $

[L.replicate 1 $ horiz a
, L.replicate 3 $ vert f b
, L.replicate 1 $ horiz g
, L.replicate 3 $ vert e c
, L.replicate 1 $ horiz d
]

where
horiz True = " ###### "
horiz False = " "

vert b1 b2 = part b1 <> " " <> part b2
where

part True = "#"
part False = "."

Let’s try drawing a 5! It should have segments a, f, g, c and d set:

ss5 :: Vec 7 Bool
ss5 = True :> False :> True :> True :> False :> True :> True :> Nil

> putStrLn $ showSS ss5
######
.
.
.
######
. #
. #
. #
######

We can hook this up to real hardware by pairing it with a decimal point (unset)
and the digit selector anodes/cathodes depending on the board. In the code below,
we are using a Vec 4 Bool to select which digits are on; the number 4 should be the
number of digits in our seven-segment display. You should also adapt the choice of
Active Low and Active High types to suit your display wiring.

3.4 Seven-segment display 35

topEntity
:: "SS" :::

("AN" ::: Signal System (Vec 4 (Active High))
, "SEG" ::: Signal System (Vec 7 (Active Low))
, "DP" ::: Signal System (Active Low)
)

topEntity =
(map toActive <$> anodes
, map toActive <$> segments
, toActive <$> dp
)

where
anodes = pure $ False :> False :> False :> True :> Nil
segments = pure ss5
dp = pure False

The value of False :> False :> False :> True :> Nilmeans only the last digit
(out of four) is on. This requires the digit selector pins to be numbered so that 0 is
the rightmost digit. But the 0th should be the vector’s leftmost element? That is
true when indexing (so ('a' :> 'b' :> Nil) !! 0 returns 'a'), but in buses, such
as a vector-valued signal, the order is most to least significant bits going left to
right, just like when writing out a digit. This works out very nicely here, because
False :> False :> False :> True :> Nil matches visually the state of the digits
resulting from it, that is, off, off, off, ON.

3.4.2 Unsigned and Signed

While the code above works fine, it is lacking a lot in interactivity: all it does is
display the number 5. So let’s change it a bit so that we can use four two-state
switches to input a four-bit number, and then we can display that number as a
single hexadecimal digit.

To do this, first of all we need to represent a four-bit number. Just like vectors
that are tracked in the type system to have 𝑛 elements, Clash offers types for 𝑛-bit
Signed and Unsigned numbers. The only difference between these two types is
that the range of representable values is (−2𝑛−1) . . . (2𝑛−1 − 1) for Signed n (using
two’s-complement format) and 0 . . . (2𝑛 − 1) for Unsigned n.

Both types are instances of Eq, Ord, Num etc. as one would expect (the Num instance
is overflowing, e.g. 6 + 4 :: Unsigned 3 is 2). They are also instances of BitPack,
with BitSize (Unsigned n) ~ n and BitSize (Signed n) ~ n, no surprises here.
At the edges, we can use this BitPack instance to convert from/to a Vec n Bit,
possibly composed with a map complement to deal with active-low inputs/outputs.

Chapter 3 Combinational Circuits are Applicative Functors36

For some special values of n, Signed n and Unsigned n behave exactly like the
standard Haskell IntN and WordN types, e.g. Unsigned 8 and Word8 both represent
the same values with the same semantics; the BitPack instance of both ensures we
can go between them with bitCoerce. This can be very useful when interfacing
with Haskell libraries.

If we want to represent a single hexadecimal digit to be shown on a seven-
segment display, Unsigned 4 is a great choice. In the next chapter when we get to
driving multiple seven-segment displays, we will see that because BitPack is closed
under products, we can use bitCoerce to turn e.g. an Unsigned 16 into a four-tuple
of (Unsigned 4, Unsigned 4, Unsigned 4, Unsigned 4) to display a 16-bit number
using four hexadecimal digits. For now, we are going to concentrate on a single
such digit.

Turning the 4-bit number into a seven-segment pattern is easy with a combina-
tional circuit. We just implement a pure function to “render” hexadecimal digits
into segments:

encodeHexSS :: Unsigned 4 -> Vec 7 Bool
encodeHexSS n = unpack $ case n of

-- abcdefg
0x0 -> 0b1111110
0x1 -> 0b0110000
0x2 -> 0b1101101
0x3 -> 0b1111001
0x4 -> 0b0110011
0x5 -> 0b1011011
0x6 -> 0b1011111
0x7 -> 0b1110000
0x8 -> 0b1111111
0x9 -> 0b1111011
0xa -> 0b1110111
0xb -> 0b0011111
0xc -> 0b1001110
0xd -> 0b0111101
0xe -> 0b1001111
0xf -> 0b1000111

3.4 Seven-segment display 37

We can try it out e.g. to make sure 6 and b are discernibly different:

> putStrLn $ showSS $ encodeHexSS 0x6
######
.
.
.
######
#
#
#
######

> putStrLn $ showSS $ encodeHexSS 0xb
......
.
.
.
######
#
#
#
######

Looks good to me! Let’s hook up some input switches to encodeHexSS and route it
to the segments:

topEntity
:: "SWITCHES" ::: Signal System (Vec 4 Bit)
-> "SS" ::: ("AN" ::: Signal System (Vec 4 (Active High))

, "SEG" ::: Signal System (Vec 7 (Active Low))
, "DP" ::: Signal System (Active Low)
)

topEntity sws =
(map toActive <$> anodes
, map toActive <$> segments
, toActive <$> dp
)

where
anodes = pure $ False :> False :> False :> True :> Nil
digit = bitCoerce <$> sws
segments = encodeHexSS <$> digit
dp = pure False

Chapter 3 Combinational Circuits are Applicative Functors38

Exercises:

• Wire up some of the unused switches to select which seven-segment digit to
turn on

• Change the input to an Unsigned 8, show its lower 4 bits as the digit, but turn
on the decimal point if the value is greater than 15.

3.4.3 What about multiple digits?

A fairly natural way of extending our circuit would be to use more of the seven-
segment digits. Most FPGA development boards have seven-segment displays
with four or eight digits; we control which ones are on by setting the anodes signal.
However, much more useful would be to not only turn on all digits, but also to
show different figures on each of them. However, at first glance there aren’t enough
degrees of freedom exposed for it: on a four-digit display, we have 7 segment inputs,
one decimal point input, and four digit selectors; how does that allow setting each
digit separately?

In the next chapter, we will learn about stateful circuits and sequencing, which
will then allow us in the subsequent chapter to show multiple digits exploiting the
persistence of vision: flashing each digit while turning on a different display, when
done at a rapid enough rate, gives the illusion that each digit is shown at the same
time.

3.5 Summary

• Signal is an instance of Applicative, corresponding to combinational circuits

• BitPack typeclass turns values into fixed-width BitVectors and back.

• Bundle typeclass makes it easy to take apart and put back together buses

• Vec is the statically sized equivalent to lists. Its known size makes it possible
to traverse it in a circuit.

• Unsigned and Signed are integers of any, statically known, size.

4State, Sequencing and Clocks:
The Register Transfer-Level Model

Since a combinational circuit can be modeled as a pure function applied to an input
signal, it follows that whenever the input signals have the same value, the output
signals will also have the same value. But there are lots of useful circuits where this
doesn’t hold, for example:

• Blinking LEDs (this and next chapter): who doesn’t like blinking LEDs?! In
its simplest form, a blinking circuit has no inputs, yet its output is sometimes
on, sometimes off.

• Turning an LED on and off with a pushbutton switch (this chapter). This is
different from the example that used a toggle switch because now when the
button is released, its result depends on what happened before:

Timestep Button held? LED on?

1. False False
2. False False

.
10. True True
11. False True
12. False True

.
20. True False

• Edge detection. This is used for synchronous communication protocols
(e.g. the PS/2 protocol described in chapter 16) where there is an explicit
clock signal between the communicating parties, and the data channel should
be sampled on edges of the clock. Clock edge here means the instant when the
clock signal goes from high to low (or vice versa depending on the protocol).
But this requires knowing what the earlier value of the clock signal was: a low
value means a “clock tick” only if the value was high up until that point.

39

Chapter 4 State, Sequencing and Clocks: The Register Transfer-Level Model40

• Keeping time. So-called asynchronous serial protocols (chapter 10) have no
shared clock signal: each communicating party is responsible for keeping its
own time to know when new data is available (or, in the case of the sender,
should be made available) on the bus. A constant input of high values might
represent one, two, or more bits of data depending on how long the value has
been there.

4.1 Clocks and registers

In Haskell we can model stateful computations over some input as a function
f :: a -> s -> (b, s), that is, a pure function that takes as extra argument its
current state and returns not just its result, but also its new state. In the setting of
circuits, there are more details to work out:

1. How often is the state updated? In other words, if the input a doesn’t change,
what is the time period for which the output is held at the b value calculated
from the current s value, before the calculation is re-done for the new s value?

2. Where do we store the s value calculated in the previous step, so that it can
be fed back as the new state?

One possible way to answer these is to “just wire everything together”, i.e. to feed
the output s directly into the input. In that case, the update frequency is determined
by the propagation delay of f: every lookup table, every transistor, even the lengths
of the wires involved all contribute to some non-zero time delay it takes for voltage
changes to propagate through the circuit. s is not explicitly stored anywhere: the
circuit itself “stores” the state.

This “solution” has so many problems that it is not supported by Clash at all.
The propagation delay of f is necessarily intensional: different implementations of
the same function, yielding different circuits, will have different propagation delays.
And since different FPGA models will have parts with different characteristics,
calculating the delay of a given Clash function would require seeing all the way
through the Clash compiler and the FPGA toolchain.

Basic composition becomes impossible: consider the simple example of a branch:

-- This is defined in the Clash Prelude as an easy way to use
-- if/then/else over applicative functors
mux :: (Applicative f) => f Bool -> f a -> f a -> f a
mux = liftA3 $ \cond thn els -> if cond then thn else els

myCircuit :: Signal dom Bool -> Signal dom Bit -> Signal dom Bit
myCircuit sw x = mux sw (complement <$> x) x

4.1 Clocks and registers 41

Here, myCircuit can be implemented as a circuit that splits the input wire into
two, and feeds both wires into a multiplexer: one as-is, and the other via a NOT gate.

mux
NOT

x

sw

However, because the NOTgate has its own delay, the two inputs to the multiplexer
will not be ready at the same time. But the multiplexer’s selector input (sw in
myCircuit’s case) would need to have the right delay so that regardless of which
branch is taken, the new signal level is already at the multiplexer right when the
selector changes. So now its delay would need to depend on the branch taken,
otherwise the signal is unstable.

4.1.1 Synchronicity

A different approach to answering the details of stateful circuits is to use a syn-
chronous model. Here, the state is updated whenever some external, regular clock
ticks. This avoids all the problems with propagation delay as long as the clock
period is long enough that everything settles in time before the next tick. Since
all circuits use the same clock, they can be freely composed: no matter how signal
changes propagate mid-period, new values are only considered at the end of the
period. In our previous example with the multiplexer, it doesn’t matter that the
two branches have different propagation delays, because if myCircuit is used in the
definition of a stateful computation, the state is only updated with the stabilized
value after enough time has passed.

While this approach neatly solves all the problems we had with stability, it
introduces two new problems:

• The clock rate must be selected correctly. If there are any signal paths through
the circuit that have a propagation delay longer than the clock period, we
are back to square one. However, the whole design can be written with the
assumption that the clock period is correct, and then the maximal delay can be
computed and checked for the circuit at the end (and FPGA toolchains do this
as part of the synthesis process). So even if it is discovered that the targeted
clock rate is too fast, we can either just decrease it (if the problem allows for it)

Chapter 4 State, Sequencing and Clocks: The Register Transfer-Level Model42

or start optimizing the critical parts of the circuit, without having to rewrite
everything to account for changed propagation delays.

• State needs to be stored somewhere during clock periods. Since the whole
point of the synchronous model is to avoid intra-period instabilities to lead to
oscillation, the newly computed state cannot be fed back directly as the input
state. Instead, at every tick of the clock, the state output of the circuit is latched
into a register, and it is the register’s value that is fed back.

The two basic building blocks of this design are, thus, the clock and the registers.
The clock is an external entity that sets everything else in motion. Usually, in

an electronic circuit there is a physical clock, with a set clock rate, based on an
oscillating quartz crystal, and other components that can generate variable-rate
clocks from that single shared base clock. The output of the clock is a one-bit square
wave; the “tick” and the “tock” of the clock are the rising and falling edges of this
signal. In this book, we will take the clock as given (i.e. as an input signal) in our
Clash circuits; and for designs where it matters, we will configure it outside Clash
to be at the right frequency.

A register holds a set number of bits at the last given value, until that value is
overwritten at the next clock tick. A register, thus, has two inputs and one output at
minimum: the clock and the write value are its inputs, and the currently held read
value is its output. Clash adds two more inputs to each register: a reset input that
loads the initial value of the register, regardless of the write value, and an enable
input which controls whether the whole component is live or not.

4.2 The RTL model: register and delayed feedback

Armed with clocks and registers, we can implement synchronous stateful circuits
using feedback, delayed via a register:

fun

clk

reg

x

y

Now we can describe the whole circuit as a register whose read output and write
input are connected to a combinational circuit. Similar to the combinational circuit

4.2 The RTL model 43

model, this model is also closed under composition, by just composing the pure
functions and storing the product of all states in a single register.

This model is widely used to describe digital circuits and is known as the Register-
Transfer level model, or RTL for short, since it describes the design in terms of the
combinational circuits through which signals are transferred between registers. RTL
is the basis of not just Clash, but also Verilog/SystemVerilog and VHDL, the two
mainstream hardware description languages. FPGA synthesis toolchains all work
by consuming RTL descriptions; it is fair to say that the RTL model is the bread and
butter of FPGA design, and this is no different in Clash.

The Clash primitive to create a register is called, unsurprisingly, register. Be-
cause writing code that connects the same clock, reset and enable signals to all
registers would be very tedious, Clash provides a typeclass-based shorthand for
all register-based operations. In this book, we are going to use these convenience
functions; in fact, if we import Clash.Prelude, these are the versions brought in
scope. But for this section only, we are first going to use Clash.Explicit.Prelude
to make it more obvious how the code maps to the above RTL diagram.

The type of this explicitly-clocked version of register is:

Clash.Explicit.Prelude.register
:: (KnownDomain dom, NFDataX a)
=> Clock dom -> Reset dom -> Enable dom
-> a -> Signal dom a -> Signal dom a

The typeclass constraint KnownDomain dom prescribes that dom is a valid type-level
tag for a clock domain. NFDataX a is the Clash simulator’s requirement on a for
simulating uninitialized or invalid values; we are not going to concern us with them
in this book, other than using GHC’s generics to derive the NFDataX instance for all
our datatypes to satisfy register.

The first argument, of type Clock dom, is the clock signal driving the writing
into the register value. The second argument, of type Reset dom, is the reset signal
that, when asserted, replaces the register value with the initial one. The Enable dom
argument gates the register transfer; it is basically a glorified Signal dom Bool, and
setting it to False causes the register to ignore any incoming new value.

The fourth argument is the initial value of the register: this value is what is read
from the register before the first write, and also the value loaded back on reset. The
fifth argument is what is written into the register on each tick of the clock.

4.2.1 Flipping a Bool once

Let’s make a circuit that takes the control signals (clock, reset and enable) as inputs,
and creates possibly the most boring stateful circuit: one that outputs a True signal

Chapter 4 State, Sequencing and Clocks: The Register Transfer-Level Model44

in the first cycle, and False afterwards. This is not quite using the RTL model to its
fullest, since there is no feedback yet.

import Clash.Explicit.Prelude

helloRegister
:: Clock System -> Reset System -> Enable System
-> Signal System Bool

helloRegister clk rst en = register clk rst en True (pure False)

We didn’t bother with port name annotations here because we are only going
to play around with this code in the simulator. If we load it into ghci and try to
use it with sampleN, the first hurdle is coming up with clk, rst and en inputs. In a
real circuit, the clock would come from components such as the clock manager that
turns the raw quartz crystal’s oscillation into the right clock rate. Similarly, rst is
often connected to a physical button, or there is a reset circuit which provides a reset
pulse as the board is brought up. As for en, in the simplest case we want to keep our
circuit ticking away unconditionally. In fact, for simplicity’s sake, we are not going
to use the Enable lines at all in this book. Instead, we will use simple Bool-valued
signals in conjunction with mux whenever we need conditional updates.

Since we wouldn’t otherwise have access to the clock and reset button periph-
erals inside the simulator, Clash provides the functions clockGen and resetGen.
A third function, enableGen, is provided to create an always-enabled line. Note
that clockGen is not synthesizable (we can’t make a clock signal from thin air), so
we can’t use it in a real circuit we intend to run on a real FPGA, only for simula-
tion. resetGen and enableGen, on the other hand, are usable even in a real circuit –
resetGen simply generates a never-asserted reset line, and enableGen always enables
every component.

In the simulator, then, we can do the following:

> sampleN 5 $ helloRegister clockGen resetGen enableGen
[True,True,False,False,False]

This is. . . quite unexpected, isn’t it? Why is the output True for two cycles instead
of just one? The reason is that the first simulated timestep is before the first clock
cycle; then in the first cycle, the value coming from the register into the output is
True, and False is written back to the register for the next cycle.

When designing integrated circuits instead of targeting an FPGA, register values
might be undefined before being reset. The simulated behavior before the first clock
cycle is configurable in the clock domain, but IC design is beyond the scope of this
book. Luckily, the System domain’s configuration matches the behavior of FPGAs.

4.2 The RTL model 45

4.2.2 Flipping a Bool, repeatedly

To write a more interesting circuit that doesn’t just get stuck in one state after
the initial clock cycle, let’s create a proper RTL circuit that uses register-delayed
feedback to keep flipping between True and False:

flippy
:: Clock System -> Reset System -> Enable System
-> Signal System Bool

flippy clk rst en = r
where
r = register clk rst en True (not <$> r)

The money shot is in the definition of r, which is recursive but its recursion is
guarded under a call to register. To get an idea of what is happening, let’s return
both r and not <$> r, and look at it per timestep:

flippy
:: Clock System -> Reset System -> Enable System
-> Signal System (Bool, Bool)

flippy clk rst en = bundle (r, r')
where
r = register clk rst en True r'
r' = not <$> r

In the simulator, we see:

> mapM_ print $ L.zip [0..] $ sampleN 8 $ flippy clockGen resetGen
enableGen

(0,(True,False))
(1,(True,False))
(2,(False,True))
(3,(True,False))
(4,(False,True))
(5,(True,False))
(6,(False,True))
(7,(True,False))

In the first cycle, r is True (its initial value), while r' is False, as computed by
the combinational circuit fmap not from r. By the second cycle, this value of r' is
written into r, so now its value is False, which of course also means that r' is now
changed to True.

Chapter 4 State, Sequencing and Clocks: The Register Transfer-Level Model46

We can instantiate our previous diagram for flippy as such:

not

clk

reg

r

r'

Exercise:

• Write a “slow flippy” that goes True, True, False, False, True, True, . . . Hint:
use register twice.

4.3 Finally blinkenlights!

We now have everything to finally do what every book on electronics for hobbyists
must do in one of its first chapters: make some LEDs blink.

We could say that the flippy circuit already does that, but that one is too fast:
if clock is running at 100 MHz, the LED will turn on and off 50 million times a
second, which is not going to be perceptible. The idea here is to slow this down
by counting to a sufficiently large number, and taking its most significant bit as the
LED output. Because Unsigned’s Num instance implements overflow semantics, once
it gets to the largest possible Unsigned n value, adding one more to it will simply
reset it by wrapping around to 0.

We’ll choose n such that 2𝑛 clock periods takes roughly 1 second:

type SecondPeriods dom = 1_000_000_000_000 `Div` DomainPeriod dom

blinkingSecond
:: forall dom. (KnownDomain dom)
=> (1 <= DomainPeriod dom, KnownNat (DomainPeriod dom))
=> (1 <= 1_000_000_000_000 `Div` (DomainPeriod dom))
=> Clock dom -> Reset dom -> Enable dom
-> Signal dom Bit

blinkingSecond clk rst en = msb <$> r
where
r :: Signal dom (Unsigned (CLog 2 (SecondPeriods dom)))
r = register clk rst en 0 (r + 1)

Here, we use the type-level function DomainPeriod to extract the clock period
from the clock domain. The extended typeclass constraints on DomainPeriod are

4.3 Finally blinkenlights! 47

needed to be able to do the type-level computation to convert the period (in picosec-
onds) to periods per second (i.e. Hz). CLog 2 periods then computes the ceiling
of the 2-base logarithm of periods, i.e. the number of bits needed to represent that
number. For a 100 MHz clock, this will result in r :: Signal dom (Unsigned 27).

The main circuit then is using blinkingSecond to drive the LED output:

topEntity
:: "CLK" ::: Clock System
-> "LED" ::: Signal System Bit

topEntity clk = blinkingSecond clk resetGen enableGen

If we synthesize that and load it onto a real FPGA board, we will find that while
the LED does blink, it is not doing it at quite the required frequency. There are two
reasons for that.

4.3.1 A more accurate timing counter

The first reason is that the power-of-2 approximation of 1 second can be quite
inaccurate: for example, with a 100 MHz clock, counting to 227 takes 1.34 seconds.
We can improve that by using that same 27-bit counter to only count up to 100
million. Let’s also use this opportunity to factor out the conversion of frequency (in
Hertz) to clock period length (in picoseconds), i.e. a type-level version of the Clash
prelude’s hzToPeriod function:

type HzToPeriod (freq :: Nat) = 1_000_000_000_000 `Div` freq

type ClockDivider dom ps = ps `Div` DomainPeriod dom

blinkingSecond
:: forall dom. (KnownDomain dom)
=> (1 <= DomainPeriod dom, KnownNat (DomainPeriod dom))
=> (1 <= HzToPeriod 1 `Div` DomainPeriod dom)
=> Clock dom -> Reset dom -> Enable dom
-> Signal dom Bit

blinkingSecond clk rst en = msb <$> r
where
r :: Signal dom (Unsigned (CLog 2 (ClockDivider dom (HzToPeriod 1))))
r = register clk rst en 0 $ mux (r .<. limit) (r + 1) 0

limit = snatToNum (SNat @(ClockDivider dom (HzToPeriod 1)))

This is better in that the total LED blinking period is indeed going to be 1 second.
However, our 27-bit counter’s most significant bit will be unset for 671 ms (as it

Chapter 4 State, Sequencing and Clocks: The Register Transfer-Level Model48

counts up to 226 − 1) and set for 329 ms (as it counts from 226 to 100,000,000), so the
LED will be off for roughly two-third of the period and on for one-third. Of course,
if all we want to do is blink an LED “per second”, that problem is underspecified
enough that this could be good enough. But in general, we would like more control
over the duty cycle. So let’s aim for restoring the 50% duty cycle: we want our LED
to be off for half a second and on for half a second.

A neat way of doing that is to have a counter that counts up to exactly half a
second’s worth of periods, and then changes state. In the half-and-half scenario, we
could get away with the state being a Bool, but we’ll use a sum type of two counters
to show how this would generalize for arbitrary duty cycles.

Instead of an Unsigned 27 to count up to 50,000,000, we are going to use a type
that has exactly 50,000,000 values: this is the Index 50_000_000 type from Clash’s
prelude. It is similar to an Unsigned type (and its BitSize is the same as a just-large-
enough Unsigned), but its Num and Bounded instances implement the right behavior
for the given cardinality. Also note how addition doesn’t wrap over:

> [minBound .. maxBound] :: [Index 14]
[0,1,2,3,4,5,6,7,8,9,10,11,12,13]
> (10 :: Index 14) + 3
13
> (10 :: Index 14) + 4
*** Exception: X: Clash.Sized.Index: result 14 is out of bounds: [0..13]
> succ (13 :: Index 14)
*** Exception: X: Clash.Sized.Index: result 14 is out of bounds: [0..13]

We can implement succ- and pred-like functions that handle Index types without
exceptions; these functions are going to be useful in a lot of later chapters.

succIdx :: (Eq a, Enum a, Bounded a) => a -> Maybe a
succIdx x | x == maxBound = Nothing

| otherwise = Just $ succ x

predIdx :: (Eq a, Enum a, Bounded a) => a -> Maybe a
predIdx x | x == minBound = Nothing

| otherwise = Just $ pred x

With these, we can rewrite blinkingSecond to have 0.5 seconds (500 ms, or
500,000,000,000 ps) off, 0.5 seconds on. Our state will now be one of two Index
counters: either counting how long the LED should be On, or counting how long it
should be Off:

4.3 Finally blinkenlights! 49

data OnOff on off
= On (Index on)
| Off (Index off)
deriving (Generic, NFDataX)

isOn :: OnOff on off -> Bool
isOn On{} = True
isOn Off{} = False

In every clock cycle, we increment the current counter if possible; if not, we start
the other counter at 0 instead.

countOnOff :: (KnownNat on, KnownNat off) => OnOff on off -> OnOff on off
countOnOff (On x) = maybe (Off 0) On $ succIdx x
countOnOff (Off y) = maybe (On 0) Off $ succIdx y

We also move to streamlined typeclass constraints using PartialTypeSignatures,
to avoid the tedium of listing out all the combinations of 1 <= and KnownNat that
GHC happens to require:

blinkingSecond
:: forall dom. (KnownDomain dom, _)
=> Clock dom -> Reset dom -> Enable dom
-> Signal dom Bit

blinkingSecond clk rst en = boolToBit . isOn <$> r
where
r :: Signal dom

(OnOff
(ClockDivider dom (500_000_000_000))
(ClockDivider dom (500_000_000_000)))

r = register clk rst en (Off 0) $ countOnOff <$> r

Did we get the number of zeroes right in 500_000_000_000? To avoid having to
calculate with billions of picoseconds, we can add some larger units: a Second is a
thousand Milliseconds, a Millisecond is a thousand Microseconds and so on.

type Seconds (s :: Nat) = Milliseconds (1_000 * s)
type Milliseconds (ms :: Nat) = Microseconds (1_000 * ms)
type Microseconds (us :: Nat) = Nanoseconds (1_000 * us)
type Nanoseconds (ns :: Nat) = Picoseconds (1_000 * ns)
type Picoseconds (ps :: Nat) = ps

Chapter 4 State, Sequencing and Clocks: The Register Transfer-Level Model50

This allows rewriting blinkingSeconds as:

blinkingSecond clk rst en = boolToBit . isOn <$> r
where
r :: Signal dom

(OnOff
(ClockDivider dom (Milliseconds 500))
(ClockDivider dom (Milliseconds 500)))

r = register clk rst en (Off 0) $ countOnOff <$> r

4.3.2 Customizing the clock

Uploading the final version of blinkingSecond, depending on the FPGA board, we
will either see it work as expected (blinking at 1 Hz), or running slower or faster.

As we promised, there are two reasons for not getting the right blinking speed.
The second one is using the System clock in Clash, when that might not have the right
configuration for the actual clock on our dev board. The System clock is defined to
run at 100 MHz, so all period calculations will use that as reference. If the real clock
connected to the CLK input is running at, let’s say, 32 MHz, then all calculations will
be off by a factor of three, so our LED will blink at one-third of the designed speed.

This bridge can be crossed from either direction. The more straightforward
one is to tell Clash what clock to use. Since the clock domains are defined at the
type level, this would involve some mucking around with typeclass instances and
singletons; it is much easier to just use the createDomain Template Haskell function,
provided by the Clash standard library:

createDomain vSystem{vName="Dom32", vPeriod = hzToPeriod 32_000_000}

topEntity
:: "CLK" ::: Clock Dom32
-> "LED" ::: Signal Dom32 Bit

topEntity clk = blinkingSecond clk resetGen enableGen

Since blinkingSecond’s definition is polymorphic in the clock domain, this ver-
sion of topEntity will do all type-level calculations with a 32 MHz clock, resulting
in a 25-bit counter instead of the 27-bit one for System.

The second way to ensure Clash calculates all clock rate computations correctly
is to change our clock to really run at 100 MHz. Most FPGAs have components to
manage clock speed: these are components that take the raw clock as input, and
using divisions and multiplications, produce the desired clock rate. The division
part is straightforward counting just like we did in our blinkingSeconds function;
the multiplication is more involved and requires some specialized physical parts

4.4 Passing around Clock, Reset and Enable lines implicitly 51

and careful feedback loops to keep the multiplied clock regular. Luckily, all this is
abstracted away behind the clock manager, and it is enough to configure it with just
the input clock rate and the desired output clock rate.

In this book, some of the circuits will need to adhere to external timing constraints
prescribed by various protocols. For example, asynchronous serial communication
(chapter 10) at a set rate, let’s say 9600 bits per second, requires both parties to have
the same idea of how long 9.6 kHz is. The actual internal clock rate of the two
parties doesn’t matter, and 9.6 kHz is very slow compared to the tens or hundreds
of MHz speeds that FPGA clocks use by default, so the same kind of counting we
did in blinkingSeconds can be used instead with good enough accuracy, as long as
Clash is configured for the right clock speed.

However, once we get to generating video output in chapter 7, we will have to
start feeding Clash a clock at just the right speed, using an external clock manager.
To see why, consider trying to generate a 640 × 480 VGA signal at 60 frames per
second. As we will see in the chapter on VGA modes, this requires pumping out
pixel data at 25.125 MHz. If, let’s say, we start from a 32 MHz raw clock, there is
no way to update the output at the desired rate of 25.125 MHz, since the closest we
can get would be either 32 MHz (using no division) or 16 MHz (counting to 2). Of
course, both 32 and 16 MHz rates are far far far beyond the timing tolerances of VGA
devices. And so when we’ll get to building computers with video output, we will
always prescribe the exact clock speed, and use the targeted FPGA’s clock manager
to produce the right clock. For this reason, we will go into the practical details of
using a clock manager in chapter 7.

4.4 Passing around Clock, Reset and Enable lines implicitly

Our blinking LED example is small enough that it is not too bothersome to pass
around the clk, rst and en arguments. However, in a larger circuit, since every
register call needs these three arguments, this can add up to quite a lot of noise.
Moreover, there is not much we can do with these signals other than passing them
around.

To mitigate this, Clash provides two version of register, and all other functions
that use register internally: Clash.Explicit.Prelude exports them as straight func-
tions from clk, rst and en; whereas Clash.Prelude exports them with the typeclass
constraint HiddenClockResetEnable dom taking the place of explicit arguments.

Chapter 4 State, Sequencing and Clocks: The Register Transfer-Level Model52

Compare the two type signatures of register:

Clash.Explicit.Prelude.register
:: (KnownDomain dom, NFDataX a)
=> Clock dom -> Reset dom -> Enable dom
-> a -> Signal dom a -> Signal dom a

Clash.Prelude.register
:: (HiddenClockResetEnable dom, NFDataX a)
=> a -> Signal dom a -> Signal dom a

The typeclass constraint HiddenClockResetEnable dom represents a clock domain
that has an associated clock, reset and enable lines. We can go back and forth
between the explicit and the implicit passing:

hideClockResetEnable
:: (HiddenClockResetEnable dom)
=> (KnownDomain dom => Clock dom -> Reset dom -> Enable dom -> r)
-> r

withClockResetEnable
:: KnownDomain dom
=> Clock dom -> Reset dom -> Enable dom
-> (HiddenClockResetEnable dom => r) -> r

Of course, this implicit typeclass-based clock passing still doesn’t allow us to
make something from nothing, so the top-level topEntity still has to get a clock
signal (and, optionally, a reset signal) from somewhere outside.

In the rest of this book, we will take on the following conventions:

• Clock, reset, and enable lines will be passed implicitly, i.e. using
HiddenClockResetEnable and using Clash.Prelude instead of
Clash.Explicit.Prelude.

• Since we are not going to use Enable signals, we will use enableGen in every
topEntity to enable all components at all times, and leave it to the individual
circuits to implement conditional register updates using plain Bool-valued
signals.

• We are only going to use an external Reset signal in designs that use a clock
manager, since they usually have an output signal to mark that the clock is
locked at the desired frequency and is ready to use. For circuits that use the
raw clock, we’ll just use resetGen to start the circuit immediately as soon as
the FPGA is powered up.

4.4 Passing around Clock, Reset and Enable lines implicitly 53

• All functions will be domain-polymorphic, with sufficient constraints as
needed. Of course, topEntity can’t be domain-polymorphic since that is
where the clock domain is specified; so all through this book, topEntity will
be defined as withClockResetEnable clk resetGen enableGen board, i.e. as a
domain-polymorphic, implicitly-clocked function with input signals applied.

Following is the full code listing of the LED blinker rewritten in the same
style that we will use for the rest of this book. Note that this imports the defini-
tion of succIdx from RetroClash.Utils, and ClockDivider and Milliseconds from
RetroClash.Clock: we will be implicitly collecting a library of reusable functions
throughout the book.

{-# LANGUAGE NumericUnderscores, PartialTypeSignatures #-}
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
module Blink where

import Clash.Prelude
import RetroClash.Utils (succIdx)
import RetroClash.Clock (ClockDivider, Milliseconds)
import Data.Either
import Data.Maybe

-- Change this to the raw clock rate of the FPGA board you are targeting
createDomain vSystem{vName="Dom100", vPeriod = hzToPeriod 100_000_000}

data OnOff on off
= On (Index on)
| Off (Index off)
deriving (Generic, NFDataX)

isOn :: OnOff on off -> Bool
isOn On{} = True
isOn Off{} = False

countOnOff :: (KnownNat on, KnownNat off) => OnOff on off -> OnOff on off
countOnOff (On x) = maybe (Off 0) On $ succIdx x
countOnOff (Off y) = maybe (On 0) Off $ succIdx y

topEntity
:: :CLK100MHZ" ::: Clock Dom100
-> "LED" ::: Signal Dom100 Bit

topEntity clk =
withClockResetEnable clk resetGen enableGen blinkingSecond

Chapter 4 State, Sequencing and Clocks: The Register Transfer-Level Model54

blinkingSecond
:: forall dom. (HiddenClockResetEnable dom, _)
=> Signal dom Bit

blinkingSecond = boolToBit . isOn <$> r
where
r :: Signal dom

(OnOff
(ClockDivider dom (Milliseconds 500))
(ClockDivider dom (Milliseconds 500)))

r = register (Off 0) $ countOnOff <$> r

In fact, let’s factor out this pattern so we can write topEntity point-free:

withResetEnableGen
:: (KnownDomain dom)
=> (HiddenClockResetEnable dom => r)
-> Clock dom -> r

withResetEnableGen board clk =
withClockResetEnable clk resetGen enableGen board

topEntity
:: Clock Dom100
-> Signal Dom100 Bit

topEntity = withResetEnableGen blinkingSecond

Exercises:

• Blink only a set number of times
• Blink multiple LEDs at different speeds
• Synchronized LED blinking. Write fun patterns like a left-to-right then right-

to-left sweep, or a sweep from both sides to the center and then outwards
again.

• Sequence multiple LED blinking patterns, each one shown for a couple of
seconds before switching to the next one.

4.5 Multiple clocks

The problems associated with interfacing components with different clocks is be-
yond the scope of this book. We will design circuits where everything runs at the
same clock, using counter-based clock rate division where needed. For circuits that
generate video output, the base clock rate will be chosen to match the pixel clock
rate.

4.6 Pushbutton-toggled LED 55

In the second half of the book, we will implement computers based on pre-
existing designs from the late 1970s. The original machines we will replicate had
a multi-clock design by necessity: the video subsystem was required to be simple
enough so that it can run at the speed needed to produce a valid video signal, but
the CPU was too complex to run at that rate. On a modern FPGA, these simple CPUs
can be easily run at the speed prescribed by the video system. By using a single
clock domain for the whole computer, we will avoid all the headache associated
with domain crossing; but this comes at the price of our computer not behaving
exactly the same as the original ones: we will discuss the user-visible implications
of this separately for each machine.

4.6 Pushbutton-toggled LED

While blinking is fun, its one drawback is that it doesn’t have any inputs. So let’s
turn back to one of the motivating problems at the start of this chapter: toggling an
LED on and off with a pushbutton switch. We can describe this easily using the RTL
model: as a register containing the LED state, that at every cycle will either stays its
current value or its complement. The trigger to flipping the register is the click of
the switch, i.e. if the button is held in the given cycle but wasn’t in the previous one.

topEntity
:: "CLK" ::: Clock System
-> "BTN" ::: Signal System (Active High)
-> "LED" ::: Signal System (Active High)

topEntity = withResetEnableGen board
where
board btn = toActive <$> led
where

btn' = fromActive <$> btn
click = btn' .&&. (not <$> register False btn')
led = register False $ mux click (not <$> led) led

There are two patterns here that are generally useful and will occur in a lot of our
other designs; both of these are provided by the Clash Prelude as library functions:

• In the definition of led, the pattern of “update a register only if a condition
holds” is called regEn (for “register with a separate update enable line), allow-
ing us to write instead:

led = regEn False click (not <$> led)

• In the definition of click, this is an instance of (rising) edge detection: click’s
value is True iff the underlying btn' signal’s value is rising, i.e. it is larger than

Chapter 4 State, Sequencing and Clocks: The Register Transfer-Level Model56

its previous value. For Bool, we have True > False, and so a transition from
False to True counts as a rising edge. The first argument, False, is what initial
value to use; its only relevance is for the very first cycle. In this case, its initial
value doesn’t matter at all: we are processing human input, so no one will
notice what happens with button clicks in the very first tens of nanoseconds
after turning on the board.

click = isRising False btn'

We can also abstract a third pattern and add it as a library function: oscillating a
Bool value on an external signal.

oscillateWhen
:: (HiddenClockResetEnable dom)
=> Bool -> Signal dom Bool -> Signal dom Bool

oscillateWhen init trigger = r
where
r = regEn init trigger (not <$> r)

Together, these allow us to rewrite our topEntity into the following form:

topEntity
:: "CLK" ::: Clock System
-> "BTN" ::: Signal System (Active High)
-> "LED" ::: Signal System (Active High)

topEntity = withResetEnableGen board
where
board btn = toActive <$> led
where

click = isRising False (fromActive <$> btn)
led = oscillateWhen False click

4.6.1 Debouncing

When trying it out on real hardware, pay close attention to the LED changing as
you press the button. Do you notice that sometimes a click doesn’t seem to register?

When a real, physical switch is pressed, its output doesn’t just go straight from
one level to the other. Instead, once it is pushed, it will keep jumping between
“open” and “close” for a while before becoming fully closed. This is called bouncing
and its effect can occur both when pressing and when releasing, but is usually more
pronounced when pressing.

4.6 Pushbutton-toggled LED 57

The details of how a given switch bounces depends on its physical characteristics,
but in general it is going to be a short burst of high-frequency noise starting as the
switch is pressed. Since this signal looks very different from the user’s intention (a
single transition from open to closed), and it is not at all apparent when operating
a pushbutton switch that this is happening, devices should take care to remove this
effect. In our case, we want the “user-intended” button event to toggle the LED, not
these “artificial” events.

Since the bounce noise is very different from the intended signal, we should
be able to remove it and get a nice, clean signal instead, with a single sharp edge
around presses and releases. There are hardware- and software-based solutions for
this. Here, we are going to create a software debouncer in Clash: it will take the
Signal dom Bit as it comes out of the physical pushbutton, and produce an output
Signal dom Bit without these high-frequency jumps.

It is not at all impossible that your development board already has hardware
debouncing between the pushbutton switches and the FPGA (see the vendor’s
documentation), and in general, that is a good, useful thing to have. However, it
robs us of this opportunity to show a debouncer’s effect in the most easily observable
way. Debouncing is idempotent1 so adding the below software debouncer to a circuit
running on a board with hardware-debounced buttons will still work correctly.

The idea behind software debouncing is quite simple: we keep track of the input
history for a set number of cycles, and let changes through only once the value has
stabilized for all of them. Of course, in the real implementation, we don’t need
to keep around 𝑛 previous values to compare them with the current input, it is
sufficient to keep a single “last seen” value and a counter up to 𝑛 of cycles since the
change.

1Modulo lag. At the timescales involved in humans pressing buttons and looking at LEDs, microsec-
onds of lag is not going to be observable.

Chapter 4 State, Sequencing and Clocks: The Register Transfer-Level Model58

Because this is the most complicated RTL code we’ve seen so far, let’s go through
it in detail. First of all, we will need a way to keep incrementing the “stability
counter” capped at maxBound, i.e. we want to compute the saturating successor. We can
do that easily using succIdx, by mapping the Nothing returned by succIdx maxBound
back to maxBound. We’ll write the corresponding saturating predecessor as well:

moreIdx :: (Eq a, Enum a, Bounded a) => a -> a
moreIdx = fromMaybe maxBound . succIdx

lessIdx :: (Eq a, Enum a, Bounded a) => a -> a
lessIdx = fromMaybe minBound . predIdx

Now for the main event, starting with the intended type of our debouncing
function:

debounce
:: forall ps a dom. (Eq a)
=> SNat ps -> a -> Signal dom a -> Signal dom a

As we will see, this is a bit optimistic: the implementation will impose more type-
class constraints; but only things likeNFDataX aor KnownNat (ClockDivider dom ps)
which are going to be satisfied in any reasonable use case anyway.

The result of debounce ps start this should be the last stable value we’ve seen
of this, i.e. the last value that hasn’t changed for ps picoseconds:

debounce _ start this = lastStableValue
where -- Continued below

We will store lastStableValue in a register that is only updated whenever the
input has stabilized. We will say that a signal is stable if it hasn’t changed for the
last n cycles; in other words, if it has been true for n cycles that the current value
in this is equal to the previous one. If the current and the previous values are not
equal, we start looking for a new run of n equal values by resetting the counter to 0:

prev = register x0 this
counter = register (0 :: Index (ClockDivider dom ps)) $

mux (this .==. prev) (moreIdx <$> counter) 0
stable = counter .== maxBound

Here, the operator (.==.) is simply an Applicative-lifted version of (==), i.e. it
is defined as liftA2 (==) in the Clash prelude. We will also use (==.) and (.==)
where the argument on the left- or the right-hand side is a pure value, respectively.

4.6 Pushbutton-toggled LED 59

Now we have everything to define lastStableValue. It is clear that it should be
of the form regEn start stable _, but there is one subtlety remaining: when the
signal is stable, should we update lastStableValue from this, or from prev?

As we have seen in RTL schematics before, the value feeding into combinational
circuits from a register is the value that is being read, i.e. the value that was written
at the end of the previous clock cycle. Since stable is defined in terms of counter,
which is a register, this means when a sudden change occurs in the input after a
long enough run of stable values, stable will still be True, since it is seeing counter
not at value 0 yet, but at maxBound. Clearly, this means updating lastStableValue
from this at that point would be incorrect, and we should be using the previous
value, i.e. the input that was used to compute the value of counter, and thus, stable:

lastStableValue = regEn x0 stable prev

Alternatively, we can shave off this extra cycle of lag by using this in the defi-
nition of lastStableValue, if we use the just-now-computed next value of counter,
bypassing the register:

debounce _ start this = regEn start stable this
where
counter = register (0 :: Index (ClockDivider dom ps)) counterNext
counterNext = mux (this .==. register start this)

(moreIdx <$> counter)
0

stable = counterNext .== maxBound

Let’s factor out the “has this signal’s value changed” bit into a utility function:

changed
:: (HiddenClockResetEnable dom, Eq a, NFDataX a)
=> a -> Signal dom a -> Signal dom Bool

changed x0 x = x ./=. register x0 x

Putting it all together, this gives us the following final versions of debounce and
our button-toggling circuit, including the full type of debounce with all the extra
constraints imposed by the use of register and ClockDivider. The debouncing
period of 5 ms was chosen mostly unscientifically, as something in the right order of
magnitude for pushbutton switches, but still fast enough to not be a problem with
interactive applications such as a video game running at 60 fps, requiring frame-
perfect input. Of course, readers should feel free to experiment with different values
for a given pushbutton.

Chapter 4 State, Sequencing and Clocks: The Register Transfer-Level Model60

debounce
:: forall ps a dom. (Eq a, NFDataX a)
=> (HiddenClockResetEnable dom, KnownNat (ClockDivider dom ps))
=> SNat ps
-> a -> Signal dom a -> Signal dom a

debounce _ start this = regEn start stable this
where
counter = register (0 :: Index (ClockDivider dom ps)) counterNext
counterNext = mux (changed start this) 0 (moreIdx <$> counter)
stable = counterNext .== maxBound

topEntity
:: Clock System
-> Signal System (Active High)
-> Signal System (Active High)

topEntity = withResetEnableGen board
where
board btn = toActive <$> led
where

btn' = debounce (SNat @(Milliseconds 5)) False $
fromActive <$> btn

click = isRising False btn'
led = regEn False click (not <$> led)

4.7 Summary

• A shared clock provides synchronicity, which in turn allows abstracting away
the propagation delay

• The RTL model describes stateful circuits as registers, combinational circuits
between them, and synchronous feedback through the registers’ write inputs

• Clash’s register primitive enables RTL circuit design, with feedback modeled
as register-guarded recursion

• The HiddenClockResetEnable typeclass clears up the clutter of getting the
clock, reset, and enable lines to every register

• Once timekeeping enters the picture, we need to make sure Clash is config-
ured to use the right clock settings for period calculations

• Clash provides a datatype Index n with exactly n values, which is useful for
counting or indexing. n doesn’t need to be a power of 2.

4.7 Summary 61

• Just because inputs are digital, doesn’t mean they can’t have noise: debounc-
ing can remove high-frequency components from a signal that we expect to
only have low-frequency changes

5Time-domain Multiplexing

Time is what keeps everything from happening all at once.
— Ray Cummings

Multiplexing is combining multiple signals into one, by dividing the single
channel somehow. For example, multiple radio stations can broadcast in the same
area at the same time because they are multiplexed in the frequency domain: every
radio channel uses a different carrier frequency (sufficiently apart from each other).
Radio receivers then can either tune to a specific frequency (which is how “normal”
radio receivers work), or decompose the mixed signal in the frequency domain and
listen to all radio stations at the same time1.

In this chapter, we will look into situations where the division is in the time
domain: the same signal lines will be used for one purpose for a short while, then
for a slightly different purpose for a bit, before moving on to the next one, and so
on.

5.1 Does this have anything to do with mux?

In the previous chapter, we introduced a combinator for lifting branching into any
applicative functor. We named this combinator mux (short for multiplexer); this is
also what it is called in the Clash Prelude:

mux :: (Applicative f) => f Bool -> f a -> f a -> f a

A natural question at this point is what is the relationship between this mux signal
combinator and signal multiplexing as discussed in this chapter.

It turns out the two concepts are very tightly related. mux @(Signal dom) im-
plements a multiplexer since its result is a single Signal dom a that will take its
value from one of the two connected inputs. The details of this multiplexing is

1see http://cowlet.org/2014/05/05/listening- to-200-radio-stations-at-once.html for a detailed
explanation of this latter technique

63

http://cowlet.org/2014/05/05/listening-to-200-radio-stations-at-once.html

Chapter 5 Time-domain Multiplexing64

determined by the driver of the Signal dom Bool line. In the previous chapter, this
selector line was connected to state- and input-dependent logic; but if we connect a
simple counter to it, we instantly get a 2-way time-domain multiplexer.

5.2 Seven-segment displays, revisited

Recall that a seven-segment display with n digits has the following 7 + n pins:

• 7 segment cathodes/anodes (optionally with 1 extra for the decimal point)
• n common anode/cathode digit selectors

If we want to show different segment patterns for each digit, we seemingly have
an impossible task ahead: there are 27𝑛 possible pattern combinations, but we only
have 7 + 𝑛 two-state lines, which can’t represent more than 27+𝑛 different values.

To the surprise of no one who has read this chapter’s title, the solution is time-
domain multiplexing. At any given time, we will use the digit selectors to drive a
single digit, and set the segment lines to whatever pattern we want to show on that
digit. Then, after a while, the selectors and the segments are changed in tandem to
the next digit.

The one problem with this scheme is that instead of showing all digits at the
same time, the displays will show each digit one by one, jumping around. Or are
they? To convince us that we can use this idea for nice, stable display of multiple
digits, let’s first write a very simple circuit that will keep flashing the seven-segment
digits at different speeds.

The idea is to start with a fast clock divider running at 512 Hz, then make a
slower clock by dividing further by counting in 8 bits up to a user-supplied number
(set with 8 switches). So by setting the counting target to e.g. 0, we get 512 Hz, but
setting the target to 3 will give us a division by 4 for 128 Hz. With a target of 255,
we get 2 Hz, i.e. each digit flashing for half a second which can easily be seen by the
human eye.

We start with a Bool-valued signal that goes to True with the given period
(in picoseconds) or the given rate (in Hertz). This is implemented using Clash’s
riseEvery function, converting the period length to number of cycles:

type ClockDivider dom n = n `Div` DomainPeriod dom

risePeriod
:: forall ps dom. (HiddenClockResetEnable dom, _)
=> SNat ps
-> Signal dom Bool

risePeriod _ = riseEvery (SNat @(ClockDivider dom ps))

5.2 Seven-segment displays, revisited 65

riseRate
:: forall rate dom. (HiddenClockResetEnable dom, _)
=> SNat rate
-> Signal dom Bool

riseRate _ = risePeriod (SNat @(HzToPeriod rate))

What remains is to take i :: Index n that is the number of the currently selected
digit, and turn it into a Vec n Boolwhere only the i-th bit is set. This is called one-hot
encoding, and we do it via Unsigned n’s Bits instance. Note the use of reverse in
the definition of oneHot, corresponding to the indexing difference between vectors
and Unsigned numbers.

oneHot :: forall n. (KnownNat n) => Index n -> Vec n Bool
oneHot = reverse . bitCoerce . bit @(Unsigned n) . fromIntegral

topEntity
:: Clock System
-> Signal System (Vec 8 Bit)
-> (Signal System (Vec 4 (Active High))

, Signal System (Vec 7 (Active Low))
, Signal System (Active Low)
)

topEntity = withResetEnableGen board
where
board switches =

(map toActive <$> anodes
, map toActive <$> segments
, toActive <$> dp
)

where
segments = pure $ repeat True
dp = pure False

fast = riseRate (SNat @512)

slow = fast .&&. cnt .==. 0
where
speed = bitCoerce <$> switches
cnt = regEn (0 :: Unsigned 8) fast $

mux (cnt .>=. speed) 0 (cnt + 1)

i = regEn 0 slow (nextIdx <$> i)
anodes = oneHot <$> i

Chapter 5 Time-domain Multiplexing66

As we decrease the counter target, first we see the flashing become faster but then
something interesting happens. The actual threshold will depend on individual
visual sensitivity, but at least for this author, with a divider of 4, i.e. at 128 Hz, the
flashing is still visible (and, in fact, quite distracting), but with a divider of 3 (i.e. by
setting the counter target to 2 with the switches), at 170 Hz, the blinking goes away.
This is because persistence of vision takes over: the flashing gets too fast to see, and
the human visual processing system regards it as a continuous image. However,
170 Hz is still not necessarily fast enough: while it might look stable when looked
at head-on, the flickering is still noticeable in peripheral vision.

5.2.1 Showing different digits

Now that we have a way of turning on just one digit at a time, by changing the
segments shown, we can finally display multiple, different digits. As a first version,
let’s just change our previous circuit slightly:

digits = map encodeHexSS (0x1 :> 0x2 :> 0x3 :> 0x4 :> Nil)
segments = (digits !!) <$> i

With this small change, the first digit will display 1, the second 2 and so on. By
setting the switches to a counter target of just 3 or less, the blinking and flickering
goes away and the display will show 1234 as intended.

Before we move on, let’s factor out some reusable components for applicative
vector indexing (similar to the various versions of .==.), round-robin counting and
-multiplexing:

(.!!.)
:: (KnownNat n, Enum i, Applicative f) => f (Vec n a) -> f i -> f a

(.!!.) = liftA2 (!!)

roundRobin
:: forall n dom a. (KnownNat n, HiddenClockResetEnable dom)
=> Signal dom Bool
-> (Signal dom (Vec n Bool), Signal dom (Index n))

roundRobin next = (selector, i)
where
i = regEn (0 :: Index n) next $ nextIdx <$> i
selector = bitCoerce . oneHot <$> i

5.2 Seven-segment displays, revisited 67

muxRR
:: (KnownNat n, HiddenClockResetEnable dom)
=> Signal dom Bool
-> Signal dom (Vec n a)
-> (Signal dom (Vec n Bool), Signal dom a)

muxRR tick xs = (selector, current)
where
(selector, i) = roundRobin tick
current = xs .!!. i

Armed with these, and fixing the refresh rate to 512 Hz, we can now use 8 input
switches to show one full byte as two hexadecimal digits. On an FPGA board with
four seven-segment digits, this leaves us with two more digits; let’s just leave them
empty for now, by lifting encodeHexSS over Maybe, mapping Nothing to no segments.

board switches = (map toActive <$> anodes, map toActive <$> segments,
toActive <$> dp)

where
digits = (repeat Nothing ++) <$> (map Just . bitCoerce <$> switches)
toSegments = maybe (repeat False) encodeHexSS

(anodes, segments) = muxRR (riseRate (SNat @512)) $
map toSegments <$> digits

dp = pure False

5.2.2 Multiplexing and encoding

There are two ways of combining the hexadecimal encoder toSegments and the
round-robin multiplexer muxRR:

1. In our latest version of board, the encoding is done before muxRR:

(anodes, segments) = muxRR _ (map toSegments <$> digits)

muxRR

toSegmentsdigits!!0

toSegmentsdigits!!1

toSegmentsdigits!!2

toSegmentsdigits!!3

Chapter 5 Time-domain Multiplexing68

2. But there is another way, which is to multiplex the “model”, i.e. the
Maybe (Unsigned 4) to show, and connect the encoder to the half-byte that is
to be shown at the moment:

(anodes, digit) = muxRR (riseRate (SNat @512)) digits
segments = toSegments <$> digit

muxRR

digits!!0

digits!!1

digits!!2

digits!!3

toSegments

These two circuits differ in one important detail: for 𝑛 half-byte digits, the
first one uses 𝑛 hexadecimal encoders, whereas the second one only uses one: the
encoder itself has now become a multiplexed resource. And so, because the second
approach leads to a more optimal circuit in terms of FPGA parts usage, we will
turn this latter version of the multiplexing seven-segment driver into a reusable
component as a higher-order function:

data SevenSegment n anodes segments dp = SevenSegment
{ anodes :: "AN" ::: Vec n (Active anodes)
, segments :: "SEG" ::: Vec 7 (Active segments)
, dp :: "DP" ::: Active dp
}

driveSS
:: (KnownNat n, HiddenClockResetEnable dom, _)
=> (a -> (Vec 7 Bool, Bool))
-> Signal dom (Vec n (Maybe a))
-> Signal dom (SevenSegment n anodes segments dp)

driveSS draw digits = do
anodes <- map toActive <$> anodes
segments <- map toActive <$> segments
dp <- toActive <$> dp
pure SevenSegment{..}

where
(anodes, digit) = muxRR (risePeriod (SNat @(Milliseconds 1))) digits
(segments, dp) = unbundle $

maybe (repeat False, False) draw <$> digit

5.3 Keyboard matrix sweeping 69

Armed with these definitions, we can rewrite our circuit succinctly as:

topEntity
:: "CLK100MHZ" ::: Clock System
-> "SW" ::: Signal System (Vec 8 Bit)
-> "SS" ::: Signal System (SevenSegment 4 High Low Low)

topEntity = withResetEnableGen board
where
board switches = driveSS toSegments digits
where

digits = (repeat Nothing ++) . map Just . bitCoerce <$> switches
toSegments x = (encodeHexSS x, False)

Exercises:

• Given the 8-bit input from the switches, display them on three 7-segment
displays in decimal.

• Omit leading zeroes in the decimal version.
• At the press of a pushbutton, start and display a countdown (in seconds).
• Digital stopwatch: one pushbutton to start/stop, one to reset to 0. For extra

niceness, compute minutes from the seconds and flash the decimal point
between the minutes and the seconds at a half-second interval.

5.3 Keyboard matrix sweeping

Seven-segment display are, of course, output peripherals. In this section, we are
going to show an example of using time-domain multiplexing to drive an input
peripheral: a 4x4 keypad.

Keypads, and keyboards in general, have the same problem as 7-segment dis-
plays when it comes to number of signal lines. A keyboard is simply a collection of
pushbuttons, arranged in some user-friendly layout and with keycaps on top. Thus,
a naïve design for an 𝑛×𝑚-key keyboard would require 𝑛 ·𝑚 separate one-bit input
signal lines. However, if we arrange the buttons in an 𝑛 × 𝑚 matrix, we can get by
with just 𝑛 + 𝑚 lines, with either 𝑛 or 𝑚 of them being output lines. For example,
here is the layout of the keyboard matrix for the 4 × 4 keypad we are going to be
using in this book:

Chapter 5 Time-domain Multiplexing70

1 2 3 A

4 5 6 B

7 8 9 C

0 F E D

Similarly to the multi-digit seven-segment display, one set of outputs function
as the column selectors: by setting some high and the others low, we know that high
signals on the row inputs must come from those selected columns. For example, if we
select only the first column (by outputting <1, 0, 0, 0>), and observe <1, 0, 1, 0>
on the rows, we can deduct that the keys 1 and 7 are currently pressed. If 5 is also
pressed, it will only be detected when the second column is selected.

1 2 3 A

4 5 6 B

7 8 9 C

0 F E D

1

0

1

0

1 0 0 0

It is important to note that while the behavioral diagram above makes it look as
if the role of the rows and the columns could be reversed, a real, physical keyboard
matrix requires more electrical components to safeguard against accidentally short-
ing the selector pins, and that can impose directionality. When using a keypad,
always check its datasheet to see which axis should be used as a selector, i.e. as
outputs from the point of view of the FPGA. In this book, all code is written for
keypads that use the columns as active-low selectors; adapt to your hardware as
needed.

5.3.1 Getting the hang of it

Before starting to design anything more complicated, it is perhaps useful to write
a simple circuit that drives and displays a keypad, allowing us to experiment with
it interactively. To that end, let’s hook up some switches and LEDs directly to the
4 columns and 4 rows of our keypad. It is a one-liner circuit but we’ll show it here
with its full port name annotations to make it clear what gets connected to what:

5.3 Keyboard matrix sweeping 71

topEntity
:: "ROWS" ::: Signal System (Vec 4 Bit)
-> "SWITCHES" ::: Signal System (Vec 4 Bit)
-> ("LEDS" ::: Signal System (Vec 4 Bit)

, "COLS" ::: Signal System (Vec 4 Bit)
)

topEntity rows switches = (rows, switches)

To play around with this toy, connect a 4× 4 keypad and look at the LEDs while
holding down keys on it. By selecting one column at a time with the switches, we
can see that the LED state will depend only on keys in that column.

To scan the full keypad, we just need to change the column selector periodically,
and record the value read from the rows into a separate register for each column. We
can use the round-robin multiplexer function to generate the selectors, and every
column’s state register only updates itself if it is equal to the currently selected
column. We don’t really need to sweat the switching rate; in fact, we get away with
using a hard-coded rate of 1000 cycles, which is under-specified: its real-time length
will depend on the clock rate used.

type Matrix rows cols a = Vec rows (Vec cols a)
type KeyStates rows cols = Matrix rows cols Bool

scanKeypad
:: (KnownNat rows, KnownNat cols, IsActive rowAct, IsActive colAct)
=> (HiddenClockResetEnable dom)
=> Signal dom (Vec rows (Active rowAct))
-> (Signal dom (Vec cols (Active colAct))

, Signal dom (KeyStates rows cols)
)

scanKeypad rows = (map toActive <$> cols, transpose <$> bundle states)
where
(cols, currentCol) = roundRobin nextCol
nextCol = riseEvery (SNat @1_000)

states = map colState indicesI

colState thisCol = regEn (repeat False) (currentCol .== thisCol) $
map fromActive <$> rows

To produce some observable output, we can connect the keypad state straight to
some LEDs:

Chapter 5 Time-domain Multiplexing72

topEntity
:: Clock System
-> Signal System (Vec 4 (Active Low))
-> (Signal System (Vec 16 (Active Low))
, Signal System (Vec 4 (Active Low))
)

topEntity = withResetEnableGen board
where
board rows = (map toActive <$> leds, cols)
where

(cols, keyStates) = scanKeypad rows
leds = bitCoerce <$> keyStates

5.3.2 Debouncing

Let’s say we now want to implement the keypad analogue of the LED toggle push-
buttons: we want to control the 16 LEDs with the 16 keys, such that each key turns
a given LED on or off.

Implementing this without debouncing is not particularly difficult. We’ll do it
in two steps: first we convert the state matrix into an event matrix, comparing the
current state to its delayed copy, and then we toggle registers (one for each key) on
Pressed events. The reason for splitting it into two is so we can reuse the first half
in later designs.

data KeyEvent = Pressed | Released
deriving (Show, Eq, Generic, NFDataX)

type KeyEvents rows cols = Matrix rows cols (Maybe KeyEvent)

keypadEvents
:: (KnownNat rows, KnownNat cols, HiddenClockResetEnable dom)
=> Signal dom (KeyStates rows cols)
-> Signal dom (KeyEvents rows cols)

keypadEvents current = zipWith (zipWith event) <$> delayed <*> current
where
delayed = register (repeat $ repeat False) current

event False True = Just Pressed
event True False = Just Released
event _ _ = Nothing

5.3 Keyboard matrix sweeping 73

toggleKeypad
:: (KnownNat rows, KnownNat cols, HiddenClockResetEnable dom)
=> Signal dom (KeyEvents rows cols)
-> Signal dom (KeyStates rows cols)

toggleKeypad events = toggles
where
clicks = map (map (== Just Pressed)) <$> events
toggles =

bundle . map (bundle . map toggleState . unbundle) . unbundle $
clicks

where
toggleState click = let r = regEn False click (not <$> r) in r

If we try this out (by setting leds = bitCoerce <$> toggleKeypad keyState),
we will notice that it bounces, as it can be expected: every key in a keypad is
a pushbutton switch on its own, so of course they will behave the same way as
standalone buttons.

To fix that, we can’t just apply debouncing to the input signal rows directly:
when we change the column selector cols, the state read from rows will change very
quickly, so a debouncer would lose those changes and every row would read the
same. Instead, we should debounce the full keypad state, i.e. store all 16 bits of key
state as read, and only update it when all 16 values have been stable for long enough.
Also, this author’s experiments have shown some noise just after switching columns,
so we will ignore rows values for 10 cycles: we change scanKeypad to update the
colState registers only when the input is presumed to be stable:

colState thisCol = regEn (repeat False) (stable .&&. currentCol .==
thisCol) $ rows

where
stable = cnt .== maxBound
cnt = register (0 :: Index 10) $ mux nextCol 0 (moreIdx <$> cnt)

The only remaining change is to debounce the keyStates before turning it into
events, in the main board definition:

board rows = (map toActive <$> leds, cols)
where
(cols, keyStates) = scanKeypad rows
keyStates' = debounce (SNat @(Milliseconds 5))

(repeat $ repeat False)
keyStates

ledStates = toggleKeypad . keypadEvents $ keyStates'
leds = bitCoerce <$> ledStates

Chapter 5 Time-domain Multiplexing74

5.4 Showing keypad input on a seven-segment output

The two peripherals discussed in this chapter are such a good match-up that it
would be criminal not to connect them, by making a small device which accepts key-
pad input and displays the last 𝑛 hexadecimal inputs on an 𝑛-digit seven-segment
display. We will also collect some code along the way that will be very useful for
projects in later chapters.

The basic structure of our circuit is captured in the topEntity definition. It has
ports connecting both to the keypad and to the seven-segment display, and shows
how we decompose the design into three parts: input, logic and display.

topEntity
:: "CLK" ::: Clock System
-> "ROWS" ::: Signal System (Vec 4 (Active Low))
-> ("SS" ::: SevenSegment System 4 High Low Low

, "COLS" ::: Signal System (Vec 4 (Active Low))
)

topEntity = withResetEnableGen board
where
board rows = (display digits, cols)
where

(cols, key) = input rows
digits = logic key

5.4.1 Logic

Let’s start by implementing the basic logic of our circuit: maintaining a state of user-
entered digits. Here, we will describe everything in domain-appropriate types, and
leave the I/O conversion to other parts of our circuit. In this case, this means we will
assume the input is already a stream of decoded key presses as a Maybe Hex where
Nothing means no new key has just been pressed, and the Hex corresponds to the
key value, and the output is likewise a Vec n (Maybe Hex) with Nothing standing
for digits not shown.

type Hex = Unsigned 4

logic
:: forall n dom. (KnownNat n, HiddenClockResetEnable dom, _)
=> Signal dom (Maybe Hex) -> Signal dom (Vec n (Maybe Hex))

logic key = digits
where -- Continued below

We store the current digits in a register, and update it on key presses. This con-
ditional update can be written very conveniently with Clash’s regMaybe combinator,

5.4 Showing keypad input on a seven-segment output 75

which works a lot like regEn but combines the update-enable signal with the new-
value signal. The unpacking of the Maybe (in the binding of newDigit) followed by a
subsequent re-packing might seem redundant in update, but we only ever want to
push a new digit onto the state if there is one available; otherwise, the state would
be quickly flushed with all Nothings whenever no keys are pressed.

digits = regMaybe (repeat Nothing) $ update <$> key <*> digits

update key digits = do
newDigit <- key
return $ digits <<+ Just newDigit

We are using Clash’s <<+ operator to shift in a new element onto a vector, from
the right. This corresponds to our intuition that we want to put new digits to
the right-hand side of the display, the same way as a calculator works. We use
that orientation here because this way the code matches visually the behavior; but
this means (because vectors are indexed from the left) that we need to reorder the
displayed digits in display below.

5.4.2 Output

The display driver is very straightforward because our generic seven-segment func-
tion driveSS already does the heavy lifting. We simply take encodeHexSS and pair
it up with an unset decimal point.

display
:: (KnownNat n, HiddenClockResetEnable dom, _)
=> Signal dom (Vec n (Maybe Hex)) -> Signal dom (SevenSegment n _ _
_)

display = driveSS (\x -> (encodeHexSS x, False))

5.4.3 Input

The input to our logic circuit is the value of the latest key pressed, so we will need
a way to decode the keypad state into that. We have already done half of this in
keypadEvents; what remains is to map the matrix of KeyEvents onto a single one
with the right key value. This is necessarily lossy, as in not all information is kept:
if two keys are pressed at the same time, we are going to decode that into just one
key press. In other words, one of the two will “win out” over the other one. So
let’s just take the first Just row-by-row, left to right, by folding mplus over the Maybe
key events, at both levels of our Vec-in-a-Vec nesting. We use Clash’s vector-specific
fold function which exploits associativity to build a shallow tree of multiplexers

Chapter 5 Time-domain Multiplexing76

instead of the deep sequence we would get from foldr or foldl. Note that fold
requires a non-empty input vector, hence the + 1 in the type:

firstJust2D
:: (KnownNat rows, KnownNat cols)
=> Matrix (rows + 1) (cols + 1) (Maybe a)
-> Maybe a

firstJust2D = fold mplus . map (fold mplus)

Note that it isn’t enough to just apply firstJust2D on the KeypadEvents directly:
that would give us a Maybe KeyEvent. With that, all we would find out is whether any
key was pressed or released in the given clock cycle. To find out which key it is, we
need to apply a keymap, by replacing each Just Pressed value with Just mapping
(and everything else with Nothing). The keymap is needed to connect the 4 × 4
layout of the keypad with the intended values of the keys. Hexadecimal keypads
have no standard layout, so this needs to be tweaked based on the actual hardware.
In this example, we are going to be targeting a keypad with the layout shown earlier.

We can store that layout in a 4×4 matrix, and then zip it with the KeyEvents to dec-
orate each KeyEventwith its value. What’s particularly nice about this is that the defi-
nition of the keymap is visually identical to the intended layout, so it’s easy to adapt to
other layouts. Again, similar to firstJust, the two-level zipWith (zipWith decode)
structure comes simply from the nested vectors.

pressedKeys
:: Matrix rows cols a
-> KeyEvents rows cols
-> Matrix rows cols (Maybe a)

pressedKeys = zipWith (zipWith decode)
where
decode mapping (Just Pressed) = Just mapping
decode _ _ = Nothing

keymap :: Matrix 4 4 Hex
keymap =

(1 :> 2 :> 3 :> 0xa :> Nil) :>
(4 :> 5 :> 6 :> 0xb :> Nil) :>
(7 :> 8 :> 9 :> 0xc :> Nil) :>
(0 :> 0xf :> 0xe :> 0xd :> Nil) :>
Nil

We now have all the parts needed to implement our input subsystem. It has
two kinds of outputs: the first one is to be connected to the outside world, and is
required to drive the peripheral, and the second one is the result of processing the

5.4 Showing keypad input on a seven-segment output 77

input signal as it arrives from the peripheral into the representation that the logic
subsystem understands. There’s nothing deep going on here, but this structure is
nevertheless worth pointing out because it will be a recurring pattern in various
peripheral drives throughout this book.

input
:: (HiddenClockResetEnable dom, _)
=> Signal dom (Vec 4 (Active row))
-> (Signal dom (Vec 4 (Active col))

, Signal dom (Maybe Hex)
)

input = inputKeypad keymap

inputKeypad
:: (KnownNat rows, KnownNat cols, IsActive rowAct, IsActive colAct)
=> (HiddenClockResetEnable dom)
=> (KnownNat (ClockDivider dom (Milliseconds 5)))
=> Matrix (rows + 1) (cols + 1) a
-> Signal dom (Vec (rows + 1) (Active rowAct))
-> (Signal dom (Vec (cols + 1) (Active colAct))

, Signal dom (Maybe a)
)

inputKeypad keymap rows = (cols, pressedKey)
where
(cols, keyState) = scanKeypad rows
events = keypadEvents . debounce (SNat @(Milliseconds 5))

(repeat . repeat $ False)
keyState

pressedKey = firstJust2D . pressedKeys keymap <$> events

Exercises:

• Reject non-decimal input, i.e. only accept digits 0 to 9.

• Map some pushbuttons to memory cells in the following sense: pressing the 𝑖-
th pushbutton once should change the display to show the 𝑖-th register’s value.
Entering a new value with the keypad, and pressing the 𝑖-th pushbutton again
should write the new value to the register. Pressing any other pushbutton
should change the display yet again, and start editing the newly selected
register.

• Change the B key’s effect to act as a Backspace by deleting the rightmost digit.

Chapter 5 Time-domain Multiplexing78

5.5 Summary

• Multiplexing allows using a single resource for multiple purposes. Time-
domain multiplexing is when the various uses occur one after the other.

• For seven-segment displays and matrix keypads, we can achieve this by peri-
odically changing the selector by setting it to the one-hot encoded index of
the currently selected component (digit/column)

• Encoding after multiplexing allows the encoder itself to be a multiplexed,
and thus shared, component.

• Transforming all events happening in a single cycle to a single event simplifies
downstream processing at the cost of losing simultaneous events.

• We will design our circuits by factoring out the logic parts from the peripheral
drivers, with the latter taking care of interpreting the signals from the outside
world into the types of the domain where the logic lives.

6Project: Pocket Calculator

In the Project chapters, we will build some fun devices out of parts we have already
developed. Here we’re building a simplified, but working pocket calculator that
uses a multi-digit seven-segment display as its output, and a hexadecimal keypad
as its input both for the numbers and the operators

6.1 A Minimal Viable Calculator

Everyone knows what a calculator looks like. You have some keys to enter numbers
and commands such as + (for “add next number”) or = (for “show result”). Results
and the currently entered number are shown on a display.

7 8 9 +

4 5 6 -

1 2 3 C

0 =

On the most common infix calculators, an arithmetic expression such as 93 +
145 − 53 is entered in the following steps:

1. The first argument, 93 is keyed in (decimal) digit by digit, from left to right,
i.e. from most significant to least significant.

79

Chapter 6 Pocket Calculator80

2. The operator + is chosen by pressing the corresponding key. This moves the
currently entered number 93 into the register holding the running value so far
and erases the input buffer.

3. The second argument 145 is keyed in.
4. - is pressed to choose the next operator. This applies the previously chosen

operator (+ in this case) on the running value and the current input, and erases
the input buffer.

5. 53 is keyed in.
6. By pressing =, the last selected operator - is applied on the running value and

current input, and the result is displayed on the screen.

The full sequence of inputs and outputs is as follows (with a typo in step 6, fixed
in steps 7 and 8, thrown in for good measure):

Step Input Display

0. 0
1. 9 9
2. 3 93
3. + 93
4. 1 1
5. 4 14
6. 6 146
7. Backspace 14
8. 5 145
9. - 238
10. 5 5
11. 3 53
12. = 185

In our implementation, we are going to make the following choices:

• Output is on a multi-digit seven-segment display, using time-domain multi-
plexing

• Input is a 4x4 hexadecimal keypad, with the non-decimal digits mapped to
the following functions:

– A: Add: the next number entered is going to be added to the running
value

6.2 Binary Coded Decimal arithmetic 81

– B: Backspace: removes the right-most digit from the number being
entered

– C: Clear: resets both the running value and the current number to 0
– D: Deduct: the next number entered is going to be subtracted from the

running value
– E: Equals: shows the running value
– F: Fails to do anything

• To keep the scope simple, we are only going to support addition and sub-
traction. This matches the capabilities of (Turing-complete) CPUs we will
implement in later chapters. This also means we don’t have to worry about
operator precedence.1

• All computations will be done inZ/10𝑛Z: using 𝑛-digit unsigned integers with
over/underflow. We will choose 𝑛 to match the number of seven-segment
digits.

The cornerstone of our implementation is going to be this last point. By doing
everything in decimal digits, we will avoid having to convert from/to hexadecimal at
the peripherals, at the cost of complicating the arithmetic computations somewhat.

6.2 Binary Coded Decimal arithmetic

The representation we are going to use is called binary coded decimal, or BCD for
short. In this representation, four bits are used to represent one decimal digit, with
values greater than 9 considered invalid. The trick is to only keep this invariant
once a computation is finished; but internally, digits will temporarily store values
greater than 9. This allows us to re-use binary 4-bit arithmetic, which can be very
efficiently mapped to FPGA elements, as the basic building block of our arithmetic
unit. On the other hand, this representation can easily be connected to peripherals
since its unit of display/input is 4 bits, with editing operations such as changing a
digit easily expressible as manipulations of vectors of 4-bit elements.

To see how BCD arithmetic works, let’s review how two decimal numbers can
be added with pen & paper. Let’s use the previous example of 93 + 145.

1It should be noted that the most common calculators disregard operator precedence anyway, and
compute everything as if it was in fully-left-associated parenthesization, unless it’s a so-called “scientific”
or “engineering” calculator.

Chapter 6 Pocket Calculator82

+ 1 4 5
+

9
+

3

=

8
=

3
=

2

+

01

+

=

We start with the least significant digits, since there we know there is no carry yet.

1. By 3 + 5 = 8, we see that the least significant digit of the result is going to be
8, with no carry.

2. At the next digit, it is 9+ 4 = 13, giving us 3 as the result and, since 13 doesn’t
fit into a single digit, there is carry.

3. Then we run out of digits in 93, but not in 145 so we pad it to 093, which gives
us 0 + 1 + 1 = 2 for the next digit (the extra +1 is for the carry).

4. Now we’ve run out of digits from both operands, and there is no carry, so we
are done: the result is 238.

Now let’s change that in two ways:

• The inputs and the output are in a fixed number of digits.
• Numbers are stored in BCD, and all arithmetic is done in base-16.

So now we are trying to compute 009316 ⊕ 014516. Note that we are using
BCD addition ⊕, and not normal addition: using normal addition, we would get
009316 + 014516 = 01D816 instead of the intended 023816. To compute ⊕, we again
have to proceed digit-by-digit starting at the least significant one:

1. Since 316 + 516 = 816 which fits into a decimal digit, we have 316 ⊕ 516 = 8 with
no carry.

2. 916 + 416 = D16 which does not fit into a decimal digit. We need to regard it as
a two-digit result 13 and truncate it to 916 ⊕ 416 = D16 − 10 = 3 with carry.

3. 016 + 116 + 116 = 216 fits, so we have 016 ⊕ 116 + 1 = 2 with no carry.

4. We still need to compute 016 ⊕ 016 = 0 because we are operating on a fixed-
width representation of four digits.

6.2 Binary Coded Decimal arithmetic 83

5. We’ve run out of digits, giving us the result 009316 ⊕ 014516 = 023816 which is
exactly what we wanted.

For a Haskell implementation of the above, we will use the Index 10 type to rep-
resent (decimal) digits, which allows us to use bitCoerce to convert to an Unsigned 4
hexadecimal digit for the purposes of computing one digit of ⊕.

type BCD n = Vec n Digit
type Digit = Index 10

fromDigit :: Digit -> Unsigned 4
fromDigit = bitCoerce

We already know roughly how addition should work: we start from the least-
significant digits (i.e. on the right), initially with no carry, and keep adding the
digits, propagating the carry:

(x0, y0) :> (x1, y1) :> (x2, y2) :> (x3, y3) :> Nil

z0 :> z1 :> z2 :> z3 :> Nil

False

addBCD :: BCD n -> BCD n -> BCD n
addBCD xs ys = snd . mapAccumR addDigit False $ zip xs ys

But when we get to implementing addDigit, we find that it is not as simple as
adding them as Unsigned 4 numbers. For example, suppose we tried to use the
following function:

addDigitWrong :: Bool -> (Digit, Digit) -> (Bool, Digit)
addDigitWrong c (x, y) = (c', bitCoerce z')
where
z = fromDigit x + fromDigit y + if c then 1 else 0
(c', z') = if z <= 9 then (False, z) else (True, z - 10)

While straightforward, this is not correct. The problem comes because adding
two decimal digits can lead to a hexadecimal overflow. For example, let’s say c is
False, and x and y are 8 and 9. In this case, their sum is 17 = 1116, which overflows
the 4-bit unsigned value into 116, leading to the incorrect result of no carry-out and
a digit of 1 (instead of the correct result of digit 7 with carry-out).

Instead, we need to do the 4-bit addition while allowing for the possibility of an
overflow, and do the decimal truncation and the carry detection appropriately. The

Chapter 6 Pocket Calculator84

largest possible result (with carry-in) is 9 + 9 + 1 = 19 = 1316 which easily fits into
5 bits, so we can extend each 4-bit fromDigit value with an extra 0 bit, and do the
addition and the truncation in Unsigned 5:

addDigit :: Bool -> (Digit, Digit) -> (Bool, Digit)
addDigit c (x, y) = (c', fromIntegral z')
where
z :: Unsigned 5
z = extend (fromDigit x) + extend (fromDigit y) + if c then 1 else 0

(c', z') = if z <= 9 then (False, z) else (True, z - 10)

Or, written a bit more succinctly, using Clash’s add function instead of (+) which
is for exactly this use case where the result type is slightly larger than the arguments:

z = add (fromDigit x) (fromDigit y) + if c then 1 else 0

We can similarly implement BCD subtraction, using sub instead of add, and
passing a borrow flag instead of a carry:

subBCD :: BCD n -> BCD n -> BCD n
subBCD xs ys = snd . mapAccumR subDigit False $ zip xs ys
where
subDigit :: Bool -> (Digit, Digit) -> (Bool, Digit)
subDigit b (x, y) = (b', fromIntegral z')
where

z = sub (fromDigit x) (fromDigit y) - if b then 1 else 0

(b', z') = if z <= 9 then (False, z) else (True, z + 10)

6.2.1 Testing

Since these are normal, pure Haskell functions, we can convince ourselves that
addBCD is correct using e.g.QuickCheck, by comparing the result of addBCD (converted
back to a normal Integer) with using + on Integers. This is greatly helped by Clash
providing Arbitrary instances for Unsigned/Signed, Index, and Vec n a, among
others. Also, since the code below is only used in QuickCheck property testing, and
not in actual synthesis, it is not a problem that Integer has no fixed size.

6.3 State and state transitions 85

fromBCD :: BCD n -> Integer
fromBCD = foldl (\x d -> x * 10 + fromIntegral d) 0

infix 4 ~=
(~=) :: forall n. (KnownNat n) => BCD n -> Integer -> Bool
x ~= y = fromBCD x == y `mod` magnitude
where
magnitude = 10 ^ natVal (SNat @n)

prop_add :: forall n. (KnownNat n) => BCD n -> BCD n -> Bool
prop_add x y = addBCD x y ~= fromBCD x + fromBCD y

prop_sub :: forall n. (KnownNat n) => BCD n -> BCD n -> Bool
prop_sub x y = subBCD x y ~= fromBCD x - fromBCD y

If we try addBCD with addDigitWrong, QuickCheck makes short work of rejecting
it:

> quickCheck (prop_add @8)
*** Failed! Falsifiable (after 8 tests and 1 shrink):
<0,1,0,9,7,5,6,0>
<9,6,1,6,3,7,3,5>
> quickCheck (prop_add @1)
*** Failed! Falsifiable (after 9 tests):
<9>
<7>

but with the correct implementation of addDigit, addBCD now passes with any
number of digits; for example:

> quickCheck (prop_add @8)
+++ OK, passed 100 tests.
> quickCheck (prop_sub @10)
+++ OK, passed 100 tests.

6.3 State and state transitions

It is clear from the initial example sequence of input and output that there also needs
to be some internal state, storing not only the accumulated value so far, but also the
next operator (addition or subtraction) to be applied. Moreover, the current input
also needs to be stored somewhere until it is “committed” into the accumulator by
pressing a new operator key. Here is the same sequence, with the internal state
noted as well:

Chapter 6 Pocket Calculator86

Step Input Display Value Next operator

0. 0 0 +
1. 9 9 0 +
2. 3 93 0 +
3. + 93 93 +
4. 1 1 93 +
5. 4 14 93 +
6. 6 146 93 +
7. Backspace 14 93 +
8. 5 145 93 +
9. - 238 238 -
10. 5 5 238 -
11. 3 53 238 -
12. = 185 185 -

Note that in steps 0, 3, 9 and 12, there is no currently edited input, and so what is
displayed is the accumulated value.

A simple product type can capture the state of our calculator quite easily, param-
eterized by the number of (BCD) digits to store and do calculations in: value is the
accumulator, opBuf is the buffer holding the next operation to apply, and inputBuf
is the input buffer. An inputBuf value of Nothing will be used to denote the state
before any input has happened, in which case the accumulator value should be
shown instead.

data Op
= Add
| Subtract
deriving (Show, Generic, NFDataX)

data St n = MkSt
{ value :: BCD n
, opBuf :: Op
, inputBuf :: Maybe (BCD n)
}
deriving (Show, Generic, NFDataX)

initSt :: (KnownNat n) => St n
initSt = MkSt{ value = repeat 0, opBuf = Add, inputBuf = Nothing }

6.3 State and state transitions 87

In any given State, the displayed number will be either value or inputBuf, as
a sequence of n decimal digits. We’ll remove leading zeroes, but if there are no
non-zero digits, we still want to display "0" instead of nothing at all:

removeLeadingZeroes :: (KnownNat n) => Vec n Digit -> Vec n (Maybe Digit)
removeLeadingZeroes digits = case mapAccumL step False digits of

(False, _) -> repeat Nothing <<+ Just 0
(True, digits') -> digits'

where
step False 0 = (False, Nothing)
step _ d = (True, Just d)

displayedDigits :: (KnownNat n) => St n -> Vec n (Maybe Digit)
displayedDigits MkSt{..} = removeLeadingZeroes $ fromMaybe value inputBuf

Let’s try it out:

> removeLeadingZeroes (0 :> 0 :> 1 :> 2 :> Nil)
<Nothing,Nothing,Just 1,Just 2>

Looks good, but let’s make it easier on the eyes by turning the displayed digits
into a String. Similarly to the accessory functions for writing QuickCheck tests,
here we don’t care about synthesizability: this next function is only going to be
useful for testing and simulation. So we can freely use list functions and types of
non-fixed size:

import Data.Char (intToDigit)
import qualified Data.List as L

prettyDigits :: Vec n (Maybe Digit) -> String
prettyDigits = L.map (maybe ' ' (intToDigit . fromIntegral)) . toList

Better?

> putStrLn $ prettyDigits $ removeLeadingZeroes (0 :> 0 :> 1 :> 2 :> Nil)
12

Better.
Now that we have a good grasp of the internal state, it is time to think about the

state transitions. These transitions will be triggered by commands coming from the
user; and we already know what commands we want to support:

Chapter 6 Pocket Calculator88

data Cmd
= Digit Digit
| Op Op
| Backspace
| Clear
| Equals
deriving (Show, Generic, NFDataX)

We describe the action of these commands on the state in the usual way, as a
function that maps the state before the transition to the state after:

update :: (KnownNat n) => Cmd -> St n -> St n

For Clear, we restore the initial state:

update Clear _ = initSt

For Digit d, we can simply shift in d from the right to the input buffer, initializing
it to 0 :> 0 :> ... :> 0 :> Nil if needed. For Backspace, we can do exactly the
same, just shifting in 0 from the left, since this will shift out the rightmost digit into
oblivion.

update (Digit d) s@MkSt{..} = s
{ inputBuf = Just $ fromMaybe (repeat 0) inputBuf <<+ d }

update Backspace s@MkSt{..} = s
{ inputBuf = Just $ 0 +>> fromMaybe (repeat 0) inputBuf }

For Equals and Op, we need to commit the current input buffer to the accumulator
value. The only difference between the two is whether the current operator buffer
is kept or overwritten by the new op:

update Equals s@MkSt{..} = compute s
update (Op op) s = (compute s){ opBuf = op }

compute :: (KnownNat n) => St n -> St n
compute s@MkSt{..} = s{ value = newValue, inputBuf = Nothing }
where
newValue = case opBuf of

Add -> maybe value (addBCD value) inputBuf
Subtract -> maybe value (subBCD value) inputBuf

6.4 An interactive software implementation 89

6.4 An interactive software implementation

At this point, we have all the pieces of our calculator that don’t directly interact with
peripherals:

• The arithmetic functionality is implemented as pure functions, on a represen-
tation that is both machine-friendly and easy to manipulate and display.

• The internal state of our circuit-to-be is described as a Haskell datatype which
only uses synthesizable field types.

• Input events (user commands) are described as a Haskell sum type, again
synthesizable.

• State transition is described as the pure action of input events on the state.

Before moving on to writing the Clash parts that “make it all tick”, i.e. the RTL
model of the full calculator circuit, let’s see how these same parts can be used from
straight Haskell to create an interactive software implementation. What makes this
straightforward is the fact that all the pieces so far are pure (non-Signal) functions,
so we can use them just as well from the Signalworld of circuits as we did from IO in
a “computer program running on a computer” setting. We will keep coming back to
this technique in later designs, since it allows interactive testing of the components
doing the heavy lifting, in a familiar Haskell software environment.

For a calculator this simple, the software I/O is going to be simple as well. We’ll
use the Terminal package to implement a text interface without worrying about the
platform-specific details of moving around text cursors. This means our main will
look like this:

import Clash.Prelude
import System.Terminal

main :: IO ()
main = withTerminal $ runTerminalT $ do

putStringLn "Welcome to Calculator."
runCalculator

After a brief welcome message, we get to runCalculator which is where the real
program will live. For simplicity’s sake, we’ll just pass around the State directly,
using Control.Monad.Extra.loopM to drive the main loop. In the main loop, we
show the output for the current state, wait for an input event, and either exit (if
the event is a Ctrl + C interrupt), or keep running with the new state that is the
result of processing the event:

Chapter 6 Pocket Calculator90

import Control.Monad.Extra (loopM)

runCalculator = flip loopM (initSt @8) $ \st -> do
display st
ev <- awaitEvent
return $ case ev of

Left Interrupt -> Right ()
Right ev -> Left $ processEvent ev st

Implementing the output function display is trivial now because we already
have all the pieces necessary; we just need to wrap it in some Terminal commands
to keep updating a single line of text:

display st = do
setCursorColumn 0
putString $ prettyDigits . displayedDigits $ st
flush

To implement processEvent, we parse the Event argument into a Cmd, and return
the updated state. If the Event doesn’t correspond to a Cmd, we simply keep going
with the current state.

processEvent ev = maybe id update (eventToCmd ev)

There is no finesse to parsing the events: we just need to decide on a mapping of
keys to commands. The user-friendly mapping is the one that maps + to addition
and so on:

import Data.Char (digitToInt)

eventToCmd :: Event -> Maybe Cmd
eventToCmd (KeyEvent key mod) | mod == mempty = case key of

CharKey c | c `elem` ['0'..'9'] -> Just $ Digit . fromIntegral .
digitToInt $ c
CharKey '+' -> Just $ Op Add
CharKey '-' -> Just $ Op Subtract
CharKey '=' -> Just Equals
EnterKey -> Just Equals
BackspaceKey -> Just Backspace
DeleteKey -> Just Clear
_ -> Nothing

eventToCmd _ = Nothing

6.5 Hooking it up to hardware peripherals 91

But we can also bring our software implementation closer to the planned hard-
ware by mapping Events to keys of a hexadecimal keypad, and then mapping those
keys to commands. This way, we can reuse the second part in the hardware imple-
mentation. But because on a computer keyboard, the layout of the digits 0 to 9 and
the letters A to F is nothing like a 4× 4 keypad, this version is more suited for testing
than actual use.

In eventToKey, we can use digitToInt on both 0..9 and a..f because it can
parse not just decimal, but hexadecimal digits. Once we have both keyToCmd and
eventToKey, the definition of eventToCmd is a simple composition in the Maybemonad.

type Hex = Unsigned 4

keyToCmd :: Hex -> Maybe Cmd
keyToCmd n | n <= 9 = Just $ Digit $ bitCoerce n
keyToCmd 0xa = Just $ Op Add
keyToCmd 0xb = Just Backspace
keyToCmd 0xc = Just Clear
keyToCmd 0xd = Just $ Op Subtract
keyToCmd 0xe = Just Equals
keyToCmd _ = Nothing

eventToKey :: Event -> Maybe Hex
eventToKey (KeyEvent key mod) | mod == mempty = case key of

CharKey c | c `elem` ['0'..'9'] ->
Just $ fromIntegral . digitToInt $ c

CharKey c | c `elem` ['a'..'f'] ->
Just $ fromIntegral . digitToInt $ c

_ -> Nothing
eventToKey _ = Nothing

eventToCmd :: Event -> Maybe Cmd
eventToCmd = keyToCmd <=< eventToKey

The final program isn’t the most photogenic, so try it out interactively yourself:

Welcome to Calculator.
5318008

6.5 Hooking it up to hardware peripherals

We have put in so much work into our humble little calculator in this and the
previous chapter that writing the full hardware implementation is now a breeze:

Chapter 6 Pocket Calculator92

• All the peripheral drivers are already implemented in the driveSS and
inputKeymap functions we’ve developed for the keypad example.

• All the parts for the main logic are already implemented in update and
displayedDigits.

The connective tissue between these parts just needs to maintain the state in a
register, and connect the decoded inputs and outputs:

logic
:: forall n dom. (KnownNat n, HiddenClockResetEnable dom)
=> Signal dom (Maybe Cmd)
-> Signal dom (Vec n (Maybe Digit))

logic cmd = displayedDigits <$> s
where
s = register initSt (maybe id update <$> cmd <*> s)

This logic function now lives in the world of Signals, but its argument and
result types are straightforward enough that we can very easily test it using the
Clash simulator. For example, here is the definition of a Signal that corresponds to
the input events from our 93+145−53 example, with some cycles with no keypresses
thrown in for good measure:

testInput :: Signal dom (Maybe Hex)
testInput = fromList . (<> L.repeat Nothing) . stretch $

[9, 3, 0xa
, 1, 4, 6, 0xb, 5, 0xd
, 5, 3, 0xe
]

where
stretch = L.concatMap $ \x -> [Nothing, Just x, Nothing]

Running logic testInput in the Clash simulator for 13 ∗ 3 cycles with a 4-digit
display, we see that the output matches the expected values:

> :{
| mapM_ (print . toList . map (maybe ' ' (intToDigit . fromIntegral))) $

L.map L.head . L.group $
sampleN @System (13 * 3) $
logic @4 . fmap (keyToCmd =<<) $ testInput

| :}

6.5 Hooking it up to hardware peripherals 93

" 0"
" 9"
" 93"
" 1"
" 14"
" 146"
" 14"
" 145"
" 238"
" 5"
" 53"
" 185"

6.5.1 Moore machines

Our logic circuit has a very particular structure: at every tick of the clock, it takes
its current state and computes a new state from it and some input. The output of the
circuit is fully determined by the state (by applying displayedDigits on it). We can
imagine it as a finite-state stream processor that consumes the values of its input
signal, updates its internal state, and produces the values of its output signal as
shown here:

in step state output out

This kind of stream processor finite state machine is called a Moore machine,
and we have defined a particular Moore machine for our calculator where the step
function is maybe id update and the output function is displayedDigits. Clash
provides a library function moore which implements this pattern, which allows us
to avoid the recursion in the definition of logic, making it easier to understand:

moore
:: (HiddenClockResetEnable dom, NFDataX s)
=> (s -> i -> s) -> (s -> o) -> s -> Signal dom i -> Signal dom o

logic
:: forall n dom. (KnownNat n, HiddenClockResetEnable dom)
=> Signal dom (Maybe Cmd)
-> Signal dom (Vec n (Maybe Digit))

logic = moore (flip $ maybe id update) displayedDigits initSt

Chapter 6 Pocket Calculator94

6.5.2 Putting it all together

The main top-level entity has the same definition as the “keypad with seven-segment
output” example, just replacing the board logic with the above one. For complete-
ness’s sake, here it is in full detail:

topEntity
:: "CLK" ::: Clock System
-> "ROWS" ::: Signal System (Vec 4 Bit)
-> ("SS" ::: SevenSegment System 4 High Low Low

, "COLS" ::: Signal System (Vec 4 (Active Low))
)

topEntity = withResetEnableGen board
where
board rows = (display digits, cols)
where

display = driveSS (\x -> (encodeHexSS . bitCoerce $ x, False))
input = inputKeypad keymap
digits = logic cmd

(cols, key) = input rows
cmd = (keyToCmd =<<) <$> key

This corresponds to the following structure:

logic

cmd>>= keyToCmd
key

input
ROWS

COLS

displaySS
digits

Exercises:

• Change E to mean Erase, i.e. to reset the current number to 0 without changing
the running value. With this change, it’s probably a good idea to also re-map
F to Flush, which does the same as Equals.

• Change the software implementation that uses keyToCmd to decode keyboard
events positionally instead of symbolically, i.e. instead of mapping 0 to 0, 1 to 1
etc., choose a 4× 4 region of the standard QWERTY layout (the slanted square
spanning 1 and V is an obvious choice). Is that version more or less confusing
than the symbolic one? What if you have the hardware keypad in front of
you?

6.6 Summary 95

• Change the software implementation to use a State monad underneath
TerminalT. Now you can rewrite runCalculator to use Control.Monad.Extra.whileM
instead of loopM. Or, go all the way and use MaybeT (State St), exiting with
mzero and doing everything in a simple forever block.

• Change the hardware implementation to use a State monad through and
through: the types change to update :: Cmd -> State (St n) () and
displayedDigits :: State (St n) (Vec n (Maybe Digit)). At first, this
juice might not seem worth the squeeze, since now we have to play execState
and evalState games in logic. On the other hand, the changes for the
previous exercise become less tedious. In later chapters, we will revisit this
idea and build some combinators that will also clean up the new definition
of logic.

6.6 Summary

• We started with pure functions implementing the main pieces of functional-
ity. While writing these, we kept an eye on hardware realizability, but used
descriptive types.

• These pure functions can be unit-tested using standard Haskell techniques
like QuickCheck property testing.

• The circuit state and the state transitions can also be implemented with no
Signals in sight. This makes it easy to develop interactive software frontends
using off-the-shelf I/O libraries like Terminal or SDL2 that allows interactive
integration testing.

• Once all the pieces are there, the hardware implementation becomes a simple
matter of taking the right peripheral drivers and connecting them to a state
register updating on every input command. This is an instance of the Moore
machine pattern for stream processing.

• By separating the peripheral drivers from the main board logic, we can write
integration tests using the Clash simulator without having to simulate the
intricacies of the peripherals themselves.

7Video Output Using VGA

In this chapter, we implement interfacing with video displays. Video is perhaps the
most important and “fun” modality of personal computing – for example, “video
game” is a common term for computer games, but no one calls them “joystick games”
or “mouse and keyboard games”.

These days, when we think of a screen, we think of displays based on discrete
pixels: LCD, plasma displays, or OLEDs. However, the computers we are exploring
in this book predate these technologies: the display contemporary to the first home
computers was the cathode ray tube (or CRT). These displays are “dumb” devices:
there is a very close correspondence between the input signal and the internal mech-
anism of turning that signal into a visible picture. For this reason, understanding
how CRTs work is crucial in understanding their interface format.

7.1 Basic operation of a CRT display

The goal of a video display is to turn an electronic signal into visible picture.

The basic idea behind a cathode-ray tube display is to target a stream of electrons
at a screen made of some fluorescent material, i.e. that lights up when charged. Since
electrons are statically charged, they can be accelerated by an electric field. This
allows us to create an electron beam by taking a source of slow, meandering electrons
such as a heated coil (called a cathode), and putting a positively charged grid (the
anode) in front of it. Since electrons are negatively charged, the positive charge of
the grid pulls on them, accelerating them in the direction of the grid. This is called
an electron gun.

Note that in this figure, the arrows denoting the electric fields are, somewhat
counter-intuitively, going against the direction of acceleration; similarly, the deflec-
tors in the next figure seem to operate “in reverse”. This is because electric fields
are traditionally drawn pointing from the positive towards the negative pole, and
electrons are negatively charged.

97

Chapter 7 Video Output Using VGA98

AnodeCathode Screen

Lit pixel

7.1.1 Drawing in black & white

By using an electrostatic or magnetic field perpendicular to the line connecting the
electron gun to the screen, we can control its trajectory. By using two fields, we
can deflect the beam in the two perpendicular directions, targeting any point of the
screen.

Screen

Lit up
pixel

Vertical
deflector field

Horizontal
deflector field

Anode
Cathode

7.1 Basic operation of a CRT display 99

As the electron beam leaves a part of the screen, it takes some time for the
fluorescent material to lose its charge and stop emitting light. Thus, by quickly
moving the beam around while changing its intensity, we can draw an image. This
image will be light in the parts hit by the electron beam, and dark everywhere else.
The actual color of the light parts depends on the choice of fluorescent material;
white, green, and amber have been common.

7.1.2 Drawing in monochrome

If we want to generate different shades of the one color, we can simply change the
magnitude of the negative voltage in the electron gun, between the cathode and
the anode, thereby controlling the electron beam’s intensity. A more intense beam
causes the targeted part of the fluorescent screen to light up more.

7.1.3 Vector vs. raster displays

The design described so far means we can generate a picture by using a time-varying,
three-dimensional signal consisting of the 2D screen coordinates (to be applied to
the two perpendicular electrodes or coils) and the intensity. For example, to draw
a straight segment between two points on the screen, we can generate a signal that
changes 𝑥 and 𝑦 from one endpoint to the other, again and again, fast enough
that by the time we restart the cycle, the first part of the screen would just start
going dark again. This method of driving a CRT is called a vector display, and it is
how oscilloscopes work. However, apart from some specialized arcade and home
gaming computers, this is not how most CRT screens work.

Instead, televisions and most computer screens are raster displays: the image is
drawn by putting small dots of differing intensity next to each other, filling the
whole screen with a two-dimensional matrix of raster dots. Instead of following the
geometry of the scene, for every frame displayed, every dot is redrawn one after the
other, in a regular zigzag sequence.

(0, 0) (𝑥max , 0)

(0, 𝑦max) (𝑥max , 𝑦max)

Chapter 7 Video Output Using VGA100

In this setup, the input signal has only one degree of freedom: the intended
luminosity of each raster dot, left to right, top to bottom. The rest is handled by
circuitry in the display itself: for each line, the horizontal beam deflection grows
gradually from minimum to maximum; meanwhile the vertical beam deflection
stays constant. Then, the vertical deflection grows by a bit, and the horizontal
deflection goes back to its minimum value. Thus, the horizontal deflection is a
regular sawtooth pattern and the vertical one is a step function.

y

t

x

t

Taken this way, we can regard the input signal of a raster display as a serial
protocol. Synchronization between the electron beam deflector circuitry and the
video signal is achieved by two pulses: one at the end of each raster line, resetting
the horizontal sawtooth and incrementing the vertical step function; and one at
the end of each frame, resetting the vertical signal. Between these synchronization
pulses, the input signal rate is determined by the video resolution and the frame
rate; we will look at this in detail when we look at the particulars of the VGA signal
standard.

In the following illustration, the blue square marks on the time axis represent
the horizontal sync pulses, and the red circle mark shows the timing of the vertical
sync pulse. Note that vertical retracing can take several horizontal scan lines’ worth
of time; in this example, it takes two complete horizontal scan lines for the vertical
retrace, during which no picture is generated.

7.2 Video Graphics Array 101

t

x

y

Vertical
retrace

7.1.4 Color video

Because of how the human eye works, it can be tricked into perceiving any color by
using just red, green and blue light, and choosing the right ratio of intensity. The
details of this are well outside the scope of this book: here, we will just accept that
“color video” is simply a combination of red, green, and blue video.

This gives us a simple way of adding color support to a CRT design: we can use
three different materials for the screen, put three electron guns next to each other
at a slight offset, and use a mask in front of the screens so that for every raster dot,
two of the three screens are occluded from each electron beam. Each electron gun
has its own anode, so each component’s intensity can be controlled separately.

7.2 Video Graphics Array

The Video Graphics Array standard, commonly abbreviated VGA, is the most widely
used analog video format for computer displays. Originating in 1987, it is more

Chapter 7 Video Output Using VGA102

modern than the computers we build in this book. We will use it for video output
because it lies in the sweet spot of video signal formats:

• Being an analog standard, VGA is based on the same fundamental theory of
operation of CRTs as earlier designs, so “morally” it is not really anachronistic
for the 1970s computers we build in this book.

• Unlike analog television standards that were designed to accommodate radio
transmission, and burdened by layers of backwards compatibility, VGA has
separate red/green/blue intensity lines and horizontal/vertical synchroniza-
tion lines. This makes both generating and interpreting VGA signals very
straightforward.

• Also unlike television standards, VGA is versatile in the resolutions and refresh
rates it supports.

• Although the modern way of transmitting video is the digital format of HDMI,
most contemporary computer displays still support VGA.

• Most hobbyist FPGA development boards either have VGA output connected
to a digital to analog converter, or an HDMI serializer that takes a digitized
VGA signal and encodes that as an HDMI stream.

7.2.1 Signal lines of VGA

Fundamentally, VGA consists of five signal lines transmitted from the controller to
the display:

• Three color channels for red, green and blue. These are analog channels,
i.e. there is a predetermined voltage range, with ground representing zero
intensity (full darkness) in the given channel and +0.7 V representing maxi-
mum brightness.1

• The horizontal sync is a digital signal marking the end of the current raster
line. It can be either active high or active low depending on the resolution and
refresh rate used.

• The vertical sync behaves the same as the horizontal sync, marking the end of
the current frame. Its polarity is not necessarily the same as the horizontal
sync’s.

1Depending on the display technology, pixels may always emit some light, i.e. a fully “dark” screen
might still be brighter than the screen turned off.

7.2 Video Graphics Array 103

In reality, VGA connectors and cables have more than five lines, since there are
extensions to the VGA standard for querying display capabilities such as maximum
resolution and refresh rate, which require data transfer in the reverse (display to
controller) direction. Most VGA connectors on hobbyist FPGA boards don’t connect
to these lines, and they are not essential for video generation, so we will not discuss
them in this book.

7.2.2 "Digital VGA"

In Clash, and in the logic circuitry of FPGAs in general, we work with digital signals.
There is no Clash type for “an analog value between 0 and 0.7 V”. Instead, we are
going to generate a “digital VGA” signal consisting of multiple bits for each color
channel, and using standard logical low/high voltage for the sync lines. Then, some
peripheral hardware will convert that multi-bit digital signal to the analog format
of VGA, and convert the sync voltage levels to 5V.

Thus, we are going to represent VGA output with a given bit width for the red,
green and blue channels using the following datatype:

data VGAOut dom r g b = VGAOut
{ vgaHSync :: "HSYNC" ::: Signal dom Bit
, vgaVSync :: "VSYNC" ::: Signal dom Bit
, vgaR :: "RED" ::: Signal dom (Unsigned r)
, vgaG :: "GREEN" ::: Signal dom (Unsigned g)
, vgaB :: "BLUE" ::: Signal dom (Unsigned b)
}

The bit-depth of the color signals depends on the implementation of this conver-
sion. Purpose-built integrated circuits can easily support 8 bits per channel; some
hobbyist development boards instead use a resistor ladder for much smaller bit
depth, such as 4 bits per channel, or 3 for red and green and 2 for blue for a total of
8.

Home computers of the era we are exploring in this book had much more limited
palettes: for example, the Compucolor II from 1977 only supported 8 colors. This
only requires 1 bit per channel: each channel is either turned off or on. However,
other computers with comparable palette sizes, such as the Commodore 64 with
its 16 colors, require finer control of the color lines: for example, the orange color
consists of 87% red, 53% blue and 33% green, while the yellow is 93% red, 93%
blue and 47% green2. The deeper our digital representation is, the better we can

2These intensity values are taken from one of several “Commodore 64 palettes” online. In reality, the
C-64’s video generated an analog TV signal, and the actual colors showing up on the screen depended
on many factors, including the television set’s characteristics and its brightness and contrast settings.
Analog TV doesn’t even use the red/green/blue color space to represent color signals.

Chapter 7 Video Output Using VGA104

approximate these colors.

7.2.3 Signal timing

When generating a VGA signal, there are two timing concerns:

• The timing of the synchronization pulses must correspond to a valid VGA
mode.

• Between synchronization pulses, we need to keep track of time for addressing
purposes.

For the first point, there is a collection of canonical sync patterns corresponding
to various resolutions and refresh rates. For example, let’s suppose we want to
generate a 640 × 480 image, at 60 frames per second. Naïvely, we might think that
requires a horizontal sync pulse 480 · 60 = 28, 800 times a second, and a vertical one
at every 480𝑡ℎ horizontal pulse. Reality is more complicated.

After drawing the visible portion of a line area, there is a blanking period before
the next line starts. It is during this time that the (electrostatic or magnetic) field
controlling the horizontal deflection is reset and the vertical one changes to the
next line. This is why, in our previous timing diagram, the sawtooth pattern of
the horizontal deflection had a slight slope on the horizontal retrace side instead of
falling completely sharply.

The resetting of the horizontal position is triggered by the horizontal sync pulse,
which must have a prescribed length (the sync pulse width) and must occur after a
certain time has passed since blanking started (the front porch length). After the
sync pulse ends and the back porch period has passed, the blanking period ends and
the next visible line starts. The vertical sync signal has similar timing constraints.

Looking at the specification for VGA mode 640 × 480@60, we find the following
timing constraints for the horizontal sync signal:

• Horizontal visible area: 25.422 𝜇s
• Horizontal front porch: 0.635 𝜇s
• Horizontal negative pulse width: 3.813 𝜇s
• Horizontal back porch: 1.907 𝜇s
• Total line length: 31.778 𝜇s (i.e. 31.46875 kHz)

And for the vertical one:

• Vertical visible area: 15.253 ms
• Vertical front porch: 349.551 𝜇s
• Vertical negative pulse width: 63.555 𝜇s

7.2 Video Graphics Array 105

hsync

Visible area Front porch

Sync pulse

Back porch

vsync

Visible area

Front porch
Sync pulse
Back porch

• Vertical back porch: 985.104 𝜇s
• Total frame length: 16.651 ms (i.e. 60.054 Hz)

To understand where exactly these seemingly arbitrary numbers come from, we
also need to understand how addressing works. On a raster CRT display, between
pulses of the horizontal sync lines, the electron beam is gradually sweeping the
current line left to right. This behavior is driven autonomously by circuitry in the
display unit. Drawing horizontal patterns thus comes down to changing the color
channels just at the right time, when the electron beam is at the right place. This
requires the controller side to keep accurate time between sync pulses so it can know
where the display side is aiming the electron beam. To make this possible, VGA
defines the concept of the pixel clock, and all signal timing is done in terms of this
clock:

• The horizontal visible area, porch lengths and pulse width are all integer
multiples of the pixel clock period.

• While scanning the visible area, the electron beam deflection is affine in the
time since the sync pulse; in particular, it is linear in the time since the start of
the visible area.

• The vertical visible area, porch lengths and pulse width are all integer multi-
ples of the horizontal line length.

The previous, awkward and arbitrary-looking numbers for 640 × 480@60 can
now be expressed much more cleanly:

Chapter 7 Video Output Using VGA106

• Pixel clock: 25.175 MHz
• Horizontal visible area, front porch, negative pulse width and back porch:

640, 16, 96 and 48 pixels
• Vertical visible area, front porch, negative pulse width and back porch: 480,

11, 2, and 31 lines

hsync

640 16 96 48

vsync

480

11
2
31

What this all means is that to generate a valid signal and to know which pixel
to draw next, the controller can internally generate a pixel clock signal, and use
that to drive various counters. For example, we can generate the correct horizontal
sync signal by counting to 640, then to 16, then to 96, then to 48, and starting again;
setting the output to high for the first two segments, low for the third one, and high
again for the fourth one. While we are in the first segment, the value of the counter
is exactly the X coordinate of the pixel just being drawn.

7.3 VGA from Clash

Now that we have an understanding of VGA, let’s think about the design of a VGA
controller. We want the controller to take care of generating the correct synchro-
nization signals, and provide the coordinates of the currently scanned pixel. This
way, we can connect these coordinate signals to other parts of our design that will
use that information to compute the current pixel’s color.

Thus, we want the driver to give us the following signals for a 𝑤 × ℎ resolution.

7.3 VGA from Clash 107

data VGADriver dom w h = VGADriver
{ vgaHSync :: Signal dom Bit
, vgaVSync :: Signal dom Bit
, vgaX :: Signal dom (Maybe (Index w))
, vgaY :: Signal dom (Maybe (Index h))
}

So what API do we need to provide for the driver? As a first approximation,
given a timing description for a 𝑤 × ℎ resolution VGA mode, we should be able to
generate the appropriate signals:

vgaDriver
:: (HiddenClockResetEnable dom, KnownNat w, KnownNat h)
=> VGATimings w h
-> VGADriver dom w h

vga640x480at60 :: VGATimings 640 480
vga640x480at75 :: VGATimings 640 480

However, vgaDriver can only meet the VGA mode’s timing requirements if it is
running at the pixel clock rate. To see why, imagine the example of trying to count at
25.175 MHz using an underlying clock of 32 MHz. The two closest approximations
would be to count on one or two cycles, giving 32 or 16 MHz, both very, very far
from the target.

Just generating the sync pulses wouldn’t be impossible: for example, one hor-
izontal line of 48 + 640 + 16 = 704 high and 96 low cycles (at 25.175 MHz) can
be approximated by counting to 895 and 122, respectively, at 32 MHz, which cor-
responds to an exact match of a pixel clock of 25.172 MHz, i.e. off by less than 5
picoseconds per cycle. However, for the visible 814 cycles of those 1017, we have no
good way of keeping count of the X coordinate in a scale from 0 to 639.

Instead, we are going to require the clock domain of the VGADriver to match the
pixel clock frequency. We do this by including the pixel clock period length as a
type-level index on VGATimings, and requiring a matching DomainPeriod. Now the
types differ between the two 640 × 480 resolutions at refresh rates of 60 and the 75:

vgaDriver
:: (HiddenClockResetEnable dom, KnownNat w, KnownNat h)
=> (DomainPeriod dom ~ ps)
=> VGATimings ps w h
-> VGADriver dom w h

vga640x480at60 :: VGATimings (HzToPeriod 25_175_000) 640 480
vga640x480at75 :: VGATimings (HzToPeriod 31_500_000) 640 480

Chapter 7 Video Output Using VGA108

To implement the actual counting in one dimension (horizontal or vertical), we
are going to use a sum of Index types. This ensures a representation that uses the
minimum number of bits, instead of wasting bits on generic Int counters.

data VGAState visible front pulse back
= Visible (Index visible)
| FrontPorch (Index front)
| SyncPulse (Index pulse)
| BackPorch (Index back)
deriving (Show, Generic, NFDataX)

However, there is a bit of a tension here between having such a tightly typed
representation of VGAState, and hiding the front porch, pulse width, and back porch
sizes from the type of a VGA mode description. On the other hand, we really don’t
want to put them into the type of e.g. vga640x480at60, since the only thing you
should need to know to use it is that given a pixel clock of 25.175, it will report
coordinates of 640× 480. We bridge this gap by storing the sync timings existentially
in the representation of VGA timings:

{-# LANGUAGE ExistentialQuantification #-}

data VGATiming (visible :: Nat) = forall front pulse back. VGATiming
{ polarity :: Polarity
, preWidth :: SNat front
, pulseWidth :: SNat pulse
, postWidth :: SNat back
}

deriving instance Show (VGATiming vis)

data VGATimings (ps :: Nat) (w :: Nat) (h :: Nat) = VGATimings
{ vgaHorizTiming :: VGATiming w
, vgaVertTiming :: VGATiming h
}
deriving (Show)

On the term level, we store SNat singletons, which have the added benefit that
pattern matching on them also gives KnownNat instances, which we’ll need for im-
plementing the state transition function on VGAState. But before that, let’s write out
our first VGA mode definition in full:

-- | VGA 640*480@60Hz, 25.175 MHz pixel clock
vga640x480at60 :: VGATimings (HzToPeriod 25_175_000) 640 480

7.3 VGA from Clash 109

vga640x480at60 = VGATimings
{ vgaHorizTiming = VGATiming Low (SNat @16) (SNat @96) (SNat @48)
, vgaVertTiming = VGATiming Low (SNat @11) (SNat @2) (SNat @31)
}

The workhorse of our vgaDriver function, then, will be an implementation of a
state machine providing the following three observations over a base VGAState, for
the three critical segments of the timeline: the visible part, the part when the sync
pulse should be engaged, and when we’re ready for the next cycle. Note how all of
these functions have result types that don’t refer to the VGAState type parameters
that are represented existentially in VGATiming.

visible :: VGAState visible front pulse back -> Maybe (Index visible)
visible (Visible coord) = Just coord
visible _ = Nothing

sync :: VGAState visible front pulse back -> Bool
sync SyncPulse{} = True
sync _ = False

end :: (KnownNat back) => VGAState visible front pulse back -> Bool
end (BackPorch cnt) | cnt == maxBound = True
end _ = False

We implement the state transition function vgaCounter via a datatype wrapper
having, again, an existential type. Note that the front porch, pulse length, and back
porch fields of VGATiming are working double duty: they pick the right Index types
for the VGAState constructors, while also bringing the necessary KnownNat instances
in scope for the succIdx call inside count. The mkVGACounter function is used to bolt
down the front, pulse, and back existential type variables.

type Step a = a -> a

data VGACounter visible =
forall front pulse back.
(KnownNat front, KnownNat pulse, KnownNat back)
=> VGACounter (Step (VGAState visible front pulse back))

mkVGACounter
:: SNat front -> SNat pulse -> SNat back
-> Step (VGAState visible front pulse back)
-> VGACounter visible

mkVGACounter SNat SNat SNat = VGACounter

Chapter 7 Video Output Using VGA110

vgaCounter
:: (KnownNat visible) => VGATiming visible -> VGACounter visible

vgaCounter (VGATiming _ front@SNat pulse@SNat back@SNat) =
mkVGACounter front pulse back $ \case

Visible cnt -> count Visible FrontPorch cnt
FrontPorch cnt -> count FrontPorch SyncPulse cnt
SyncPulse cnt -> count SyncPulse BackPorch cnt
BackPorch cnt -> count BackPorch Visible cnt

where
count

:: (KnownNat n, KnownNat m)
=> (Index n -> a) -> (Index m -> a) -> Index n -> a

count this next = maybe (next 0) this . succIdx

Finally we have the full toolbox to implement vgaDriver: horizontally, it is
simple register counting by vgaCounter; vertically, it is a register of vgaCounter that
updates only when the horizontal counter is at its end. The correct sync pulse
polarity is implemented by using a dynamic version of toActive that uses a term-
level parameter instead of the type-level tag of Active.

toActiveDyn :: Polarity -> Bool -> Bit
toActiveDyn High = boolToBit
toActiveDyn Low = complement . boolToBit

vgaDriver
:: (HiddenClockResetEnable dom, KnownNat w, KnownNat h)
=> (DomainPeriod dom ~ ps)
=> VGATimings ps w h
-> VGADriver dom w h

vgaDriver VGATimings{..} = case (vgaCounter vgaHorizTiming, vgaCounter
vgaVertTiming) of
(VGACounter nextH, VGACounter nextV) -> VGADriver{..}
where

stateH = register (Visible 0) $ nextH <$> stateH
stateV = regEn (Visible 0) endLine $ nextV <$> stateV

vgaX = visible <$> stateH
vgaHSync = toActiveDyn (polarity vgaHorizTiming) . sync <$>

stateH
endLine = end <$> stateH

vgaY = visible <$> stateV
vgaVSync = toActiveDyn (polarity vgaVertTiming) . sync <$> stateV

7.3 VGA from Clash 111

And so this takes care of the correct timing for both synchronization and ad-
dressing. However, the VGA standard also requires the color lines to go to zero
in the blanking period, to calibrate the baseline of the analog signals. Also, some
FPGA dev boards use a VGA-to-HDMI encoder that requires a separate “display
enable” signal. For these reasons, we split the VGADriver and VGAOut structs, add a
display enable line, and write a small utility function that ensures blanking in the
non-visible area.

data VGASync dom = VGASync
{ vgaHSync :: "HSYNC" ::: Signal dom Bit
, vgaVSync :: "VSYNC" ::: Signal dom Bit
, vgaDE :: "DE" ::: Signal dom Bool
}

data VGAOut dom r g b = VGAOut
{ vgaSync :: VGASync dom
, vgaR :: "RED" ::: Signal dom (Unsigned r)
, vgaG :: "GREEN" ::: Signal dom (Unsigned g)
, vgaB :: "BLUE" ::: Signal dom (Unsigned b)
}

data VGADriver dom w h = VGADriver
{ vgaSync :: VGASync dom
, vgaX :: Signal dom (Maybe (Index w))
, vgaY :: Signal dom (Maybe (Index h))
}

vgaOut
:: (HiddenClockResetEnable dom, KnownNat r, KnownNat g, KnownNat b)
=> VGASync dom
-> Signal dom (Unsigned r, Unsigned g, Unsigned b)
-> VGAOut dom r g b

vgaOut vgaSync@VGASync{..} rgb = VGAOut{..}
where
(vgaR, vgaG, vgaB) = unbundle $ blank rgb

blank = mux (not <$> vgaDE) (0, 0, 0)

The change to vgaDriver is minimal, since vgaDE is trivially computable from
vgaX and vgaY:

vgaDE = isJust <$> vgaX .&&. isJust <$> vgaY

Chapter 7 Video Output Using VGA112

7.3.1 Pixel clock management

The type of vgaDriver prescribes a clock domain running exactly at the pixel clock
frequency. However, the clock signal is provided by an external source, running at
some set rate. What happens if the clock rate is not the same as the pixel clock rate
for the desired VGA mode?

The answer to this question is that while yes, the clock signal is external to the
logic circuitry programmed from HDLs or Clash, it is still digitally configurable,
by putting an extra element called a clock manager between the raw, fixed-rate clock
source and the clock signal consumed by Clash.

Clock
32 Mhz Clock

Manager

25.175 MHz

Programmable
LogicRESET

In the above example, the clock manager is configured to convert the raw 32 MHz
clock signal into a 25.175 Mhz output clock. As discussed above, this conversion
cannot be done with just counters; the clock manager is a black box that couldn’t be
described using the RTL abstraction. Also, since it can take a couple of input cycles
for the clock manager to “lock onto” the right output frequency, an output suitable
for use as a reset line is usually provided as well.

Unfortunately, the configuration of clock managers is fully proprietary, differing
not only between FPGA vendors but even FPGA product lines from the same vendor;
readers will need to look up the details in the reference documentation provided
by the vendor of their chosen development board. In this book, all circuits for a
given design always run in one single, shared clock domain, assumed to use the
right clock rate. For example, we will write the following Clash program to display
a black screen in a 640 × 480 VGA mode:

createDomain vSystem{vName="Dom25", vPeriod = hzToPeriod 25_175_000}

topEntity
:: "CLK_25MHZ" ::: Clock Dom25
-> "RESET" ::: Reset Dom25
-> "VGA" ::: VGAOut Dom25 8 8 8

topEntity = withEnableGen board
where
board = vgaOut vgaSync (pure (0, 0, 0))
where

VGADriver{..} = vgaDriver vga640x480at60

7.3 VGA from Clash 113

This approach allows us to put the details of the clock manager into external,
board-specific HDL files. This HDL file will wrap the Clash-generated HDL with
some hand-written code that wires up the reset and clock signals using the clock
manager pin naming conventions of the FPGA vendor. The following is an example
for a Xilinx 7-series FPGA development board, written in Verilog. All signals except
clock and reset are forwarded directly to the instance of the module topEntity
corresponding to our Clash code. The external 100 MHz clock is used as input to a
ClockWiz25 module, which is a clock manager created with the Xilinx clock wizard,
configured for 25.175 MHz output. When the clock manager is locked, we start the
Clash circuitry by releasing its reset pin.

module Wrapper (
input CLK100MHZ,
output VGA_HSYNC,
output VGA_VSYNC,
output [7:0] VGA_RED,
output [7:0] VGA_GREEN,
output [7:0] VGA_BLUE);

wire CLK_25MHZ;
wire CLK_LOCKED;

ClockWiz25 u_ClockWiz25 (
.CLKIN_100MHZ(CLK100MHZ),
.CLKOUT_25MHZ(CLK_25MHZ),
.LOCKED(CLK_LOCKED));

topEntity u_topEntity (
.CLK_25MHZ(CLK_25MHZ),
.RESET(!CLK_LOCKED),
.VGA_HSYNC(VGA_HSYNC),
.VGA_VSYNC(VGA_VSYNC),
.VGA_RED(VGA_RED),
.VGA_GREEN(VGA_GREEN),
.VGA_BLUE(VGA_BLUE));

endmodule

We can also use these board-specific wrapper files to convert color depth. For
example, suppose we’re using a board that uses a small resistor ladder for the digital-
to-analog conversion of the color channels, allowing only 3 bits for red and green,
and 2 for blue. We can still write our Clash logic in terms of 3 × 8 bits, keeping it
compatible with other boards that use more sophisticated DACs, and then throwing
away the lower bits in the board-specific Verilog code, only keeping the highest 3

Chapter 7 Video Output Using VGA114

and 2 bits per channel:

module Wrapper (
input CLK100MHZ,
output VGA_HSYNC,
output VGA_VSYNC,
output [2:0] VGA_RED,
output [2:0] VGA_GREEN,
output [1:0] VGA_BLUE);

wire CLK_25MHZ;
wire CLK_LOCKED;
wire [7:0] VGA_RED_FULL;
wire [7:0] VGA_GREEN_FULL;
wire [7:0] VGA_BLUE_FULL;

assign VGA_RED = VGA_RED_FULL[7:5];
assign VGA_GREEN = VGA_GREEN_FULL[7:5];
assign VGA_BLUE = VGA_BLUE_FULL[7:6];

ClockWiz25 u_ClockWiz25 (
.CLKIN_100MHZ(CLK100MHZ),
.CLKOUT_25MHZ(CLK_25MHZ),
.LOCKED(CLK_LOCKED));

topEntity u_topEntity (
.CLK_25MHZ(CLK_25MHZ),
.RESET(!CLK_LOCKED),
.VGA_HSYNC(VGA_HSYNC),
.VGA_VSYNC(VGA_VSYNC),
.VGA_RED(VGA_RED_FULL),
.VGA_GREEN(VGA_GREEN_FULL),
.VGA_BLUE(VGA_BLUE_FULL));

endmodule

7.4 Summary

• VGA is a video signal format heavily influenced by the theory of operation of
a cathode ray tube. Understanding CRTs helps understanding VGA.

• VGA is a serial protocol: a full frame’s worth of pixel data is shifted out
at a predetermined rate (called the pixel clock rate), with synchronization
happening on dedicated horizontal and vertical output sync lines.

7.4 Summary 115

• Pixel color is represented as three analog signals. To work with color in digital
computers, we represent them as digital values of a set bit width. This width
is ultimately determined by the peripheral hardware that converts the digital
signal to analog.

• The key to generating a valid VGA signal is to just keep time. Knowing where
exactly we are in the frame is what enables both the generation of the sync
signals, and knowing the X and Y coordinates of the current pixel.

• The pixel clock rate for a given VGA mode (resolution and refresh rate) is
standardized. We can convert the native clock rate of our FPGA board using
vendor-specific clock management parts.

8Generative Graphics

The previous chapter ended with a way of generating a valid VGA signal, but
without any content yet. Now it is time to try our hands at displaying something
more interesting than a black screen. Remembering that vgaDriver provides the X
and Y coordinates of the current pixel, and vgaOut takes an RGB triplet, the job here
is to compute the color for each pixel based on its coordinates.

8.1 Combinational patterns

The most fundamental way of doing it is if we simply put a circuit between the
coordinates and the color. For example, using a combinational circuit, we can
draw red/green/blue/white stripes by looking at the bottom-most two bits of the
X coordinate. The logic itself is trivial:

rgbwBars
:: (KnownNat w, KnownNat h, KnownNat r, KnownNat g, KnownNat b)
=> (Index w, Index h)
-> (Unsigned r, Unsigned g, Unsigned b)

rgbwBars (x, y) = case fromIntegral x :: Unsigned 2 of
0 -> red
1 -> green
2 -> blue
3 -> white

black = (0, 0, 0)
red = (maxBound, 0, 0)
green = (0, maxBound, 0)
blue = (0, 0, maxBound)
white = (maxBound, maxBound, maxBound)

As the very polymorphic type of rgbwBars tells us, it can be used to drive a
display at any resolution and at any color depth. Let’s hook it up to our standard
choice of 640 × 480@60 video mode:

117

Chapter 8 Generative Graphics118

topEntity
:: Clock Dom25
-> Reset Dom25
-> VGAOut Dom25 8 8 8

topEntity = withEnableGen board
where
board = vgaOut vgaSync rgb
where

VGADriver{..} = vgaDriver vga640x480at60
xy = liftA2 (,) <$> vgaX <*> vgaY
rgb = maybe black rgbwBars <$> xy

Here, the type of xy is inferred to be Signal _ (Maybe (Index 640, Index 480)),
which drives the instantiation of rgbw to (w ~ 640, h ~ 480). Similarly, the type of
vgaOut constrains the color depth to (r ~ 8, g ~ 8, b ~ 8).

8.2 Stateful pattern generators

Our example function rgbwBars is nice and simple, but perhaps a bit too simple.
For example, suppose we wanted to draw just red/green/blue stripes instead of
red/green/blue/white. Calculating the modulus of the X coordinate by a power
of 2 can be done by simply dropping the lowest bits, but here we would need to
calculate it by 3 – not at all easy to do in a binary circuit.

Instead, we can use an RTL circuit to run a counter from 0 to 2, in lockstep with
the X coordinate. This means our rgbBars will need to be a proper signal circuit,
not just a pure function:

rgbBars1
:: (KnownNat w, KnownNat h, KnownNat r, KnownNat g, KnownNat b)
=> (HiddenClockResetEnable dom)
=> Signal dom (Index w, Index h)
-> Signal dom (Unsigned r, Unsigned g, Unsigned b)

For a first try, we can simply increase an internal Index 3 counter in every clock
cycle, and use that as an index into a lookup table of colors:

8.2 Stateful pattern generators 119

rgbBars1 xy = colors !!. counter
where
counter = register (0 :: Index 3) $ nextIdx <$> counter

colors = red :> green :> blue :> Nil

Hooking it up in topEntity is slightly different compared to the purely combi-
national rgbBars: since its input is now a Signal of coordinates, we have to always
feed it something.

-- Inside topEntity
rgb =

mux (isJust <$> xy) (rgbBars1 (fromMaybe (0,0) <$> xy)) $
pure black

We’re ready to try it out. However, once hooked up to a real screen, instead of
nice vertical bars, we will see a checkerboard that flickers at 60 Hz:

1
60 s 1

60 s

1
60 s

• The whole image is 800 · 524 = 419, 200 clock cycles, not divisible by 3. This
means every frame is drawn from a different starting state.

• Each line is 800 clock cycles, which is again not divisible by 3. Thus, every
visible line is offset by 2 (the remainder of dividing 800 by 3) compared to the
previous line.

We can fix both of these problems by restarting the counter at the start of each vis-
ible line. For this, we need to keep track of whether we are scanning the visible area:
the corrected version of rgbBars gets the original, Maybe-wrapped coordinates, and
if the X coordinate isNothing, resets the counter to 0. The rest of the implementation
is unchanged:

Chapter 8 Generative Graphics120

rgbBars
:: (KnownNat w, KnownNat h, KnownNat r, KnownNat g, KnownNat b)
=> (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Index w)
-> Signal dom (Maybe (Index h))
-> Signal dom (Unsigned r, Unsigned g, Unsigned b)

rgbBars x y = colors .!! counter
where
counter = register (0 :: Index 3) $

mux (isNothing <$> x) (pure 0) (nextIdx <$> counter)

colors = red :> green :> blue :> Nil

8.3 Animation

We have already, accidentally, implemented animated video in rgbBars1: since each
frame started from a different state, the generated patterns were different frame by
frame. For more controlled animation, we can keep an internal state describing the
current frame, and synchronize its transition to the end of the frame.

We can detect the end of the frame simply by the vertical coordinate leaving the
visible area. In the following circuit, each frame is rendered in a solid gray color,
going from white to black. For simplicity’s sake, we will require all three color
channels to have the same depth.

grayAnim
:: (KnownNat w, KnownNat h, KnownNat c)
=> (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Index w))
-> Signal dom (Maybe (Index h))
-> Signal dom (Unsigned c, Unsigned c, Unsigned c)

grayAnim x y = bundle (brightness, brightness, brightness)
where
brightness = regEn 0 endFrame $ nextIdx <$> brightness
endFrame = isFalling False (isJust <$> y)

Our second animated example will show a more involved state transition: we
are going to draw a “ball” (more like a square) bouncing around, trapped between

8.3 Animation 121

the edges of the screen. Not only is this a simplified version of the bouncing DVD
logo — a staple of early-2000s video players — but it should also give us inspiration
for the next chapter, where we will build a fully playable Pong machine.

As before, our bouncing ball will simply be a pattern generator, i.e. a signal
function from coordinates to current color:

type BallSize = 35

bouncingBall
:: (KnownNat w, KnownNat h, KnownNat r, KnownNat g, KnownNat b)
=> ((BallSize + 2) <= w, (BallSize + 1) <= h)
=> (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Index w))
-> Signal dom (Maybe (Index h))
-> Signal dom (Unsigned c, Unsigned c, Unsigned c)

bouncingBall vgaX vgaY = draw
where -- Continued below

The extra constraints on the minimal possible screen size are included because
we are going to draw our ball as a 35 × 35 square, so we will need at least that
much space; also, we will update the ball’s position in each frame by a speed of
(2, 1), and our calculation would break down if there is not enough slack to move
the ball by that much. At this point, this might look overly pedantic, since there
are no VGA video modes with low enough resolution that this would be a problem.
However, later in this chapter we will use this same circuit to demonstrate coordinate
transformations which can create “virtual resolutions” internal to our circuit that
don’t actually exist at the video output.

The key to implementing bouncingBall is the bouncing logic, of course. Because
all reflecting surfaces (the edges of the screen) are axis-aligned, we can save ourselves
a heap of trouble by decomposing the ball’s movement into a horizontal component,
affected only by the vertical “walls”, and a vertical component, bouncing between

Chapter 8 Generative Graphics122

the horizontal “walls”. Thus, our state will be stored in two registers, updated at
the end of each frame, each one bouncing between two endpoints:

frameEnd = isFalling False (isJust <$> vgaY)

(ballX, speedX) = unbundle $ regEn (0, 2) frameEnd $
bounceBetween (0, rightWall) <$> bundle (ballX, speedX)

(ballY, speedY) = unbundle $ regEn (0, 1) frameEnd $
bounceBetween (0, bottomWall) <$> bundle (ballY, speedY)

Before we give the definition of rightWall and bottomWall, we need to think
about the type that we want to use for the state. For example, the X coordinate is
given to us as a Maybe (Index w), but it would be very painful to model all our ball
dynamics using Index w; for example, a temporary value like ballX + speedXmight
not even be in bounds. Instead, we will do all Index n calculations in Signed k
for a sufficiently large k. What is sufficiently large? Since Index n has possible
values 0, 1, . . . , 𝑛 − 1, it takes up

⌈
log2 𝑛

⌉
bits. However, we want to use a signed

representation for a more straightforward implementation of bouncing. Recall that
Signed k is stored on k bits total, for a range of −2𝑘−1 , . . . , 2𝑘−1 − 1, so for a signed
representation we need

⌈
log2 𝑛

⌉ + 1 bits total:

maxOf
:: forall n p. (KnownNat n, 1 <= n)
=> p (Maybe (Index n)) -> Signed (CLog 2 n + 1)

maxOf _ = fromIntegral (maxBound :: Index n)

leftWall = maxOf vgaX - ballSize
bottomWall = maxOf vgaY - ballSize

ballSize :: (Num a) => a
ballSize = snatToNum (SNat @BallSize)

Given the current values of ballX and ballY, drawing is a simple matter of
checking if vgaX and vgaY both fall within ballSize of them:

draw = mux isBall ballColor backColor

isBall = (near <$> ballX <*> vgaX) .&&. (near <$> ballY <*> vgaY)
where

near x0 = maybe False $ \(fromIntegral -> x) ->
x0 <= x && x < (x0 + ballSize)

ballColor = pure (0xf0, 0xe0, 0x40) -- Yellow
backColor = pure (0x30, 0x30, 0x30) -- Dark gray

8.3 Animation 123

All that remains is implementing bounceBetween itself. There are many ways to
do that; here we write a version that is based on multiple one-dimensional reflecting
surfaces, which makes it easy to add additional “walls”. We will use this ability in
the full-fledged Pong game in the next chapter, to only include the player’s paddle
as a vertical reflection surface if it is at the same height as the ball.

Each reflecting surface is characterized with a point and a surface normal (a
vector). If the ball is on the “far” side of the surface, then we need to mirror its
position along the point. Remembering that we have decomposed our ball’s motion
into two one-dimensional components, the normal “vector” is one-dimensional
as well, so instead of computing a dot product, we can simply compare signs to
determine which side the ball is. If a reflection occurs, we adjust the position and
negate the speed.

x0 x

speedX

n Wall

p

dist = p - x

(1) x on the outside of p — No reflection

x0 x

speedX

n Wall

px'

dist = p - xdist

(2) x on the inside of p — Reflected to x'

reflect
:: (Num a, Num a', Ord a, Ord a')
=> (a, a')
-> (a, a')
-> (a, a')

reflect (p, n) (x, dx)
| sameDirection n dist = (p + dist, negate dx)
| otherwise = (x, dx)

where
sameDirection u v = compare 0 u == compare 0 v
dist = p - x

Chapter 8 Generative Graphics124

When bouncing between two walls, at each time step we apply the current speed
to the position, and then reflect by two surfaces facing each other.

move :: (Num a) => (a, a) -> (a, a)
move (x, dx) = (x + dx, dx)

bounceBetween (lo, hi) = reflect (lo, 1) . reflect (hi, -1) . move

Exercises:

• Hook up some input switches to bouncingBall to independently change the
horizontal and vertical speed of the ball. Of course, the direction of motion
shouldn’t change when the speed changes, only its magnitude.

• Draw a fixed-width border around the screen, and have the ball bounce be-
tween them

• Flash the screen for one frame whenever a bounce occurs. This will require
changing reflect to report whether a reflection has occurred; we will need
this functionality for Pong anyway.

8.4 Coordinate transformations

As we have seen, the basic operation of our video circuit is to take the current
coordinates of the electron beam as input, and produce the desired color for that
pixel as output. Conversely, by putting a coordinate transformer circuit in front, we
can transform the output image.

For purely combinational circuits, any coordinate transformation works seam-
lessly. However, the situation is not that simple for stateful circuits. For example,
rgbBars, as written, internally keeps a counter that is updated in every clock cycle
inside the visible area. We can shift its image by feeding it a Just value for only a
subset of the real visible area, and it would produce the correct output. However, if
we tried to scale its output horizontally by feeding it the same X coordinate multiple
times, the counter would be incrementing for each cycle just the same: the result is
the same image as without scaling.

If, instead, we change rgbBars to only increment its counter when the current X
coordinate is different from the previous one, we get a version that can be used in a
wider variety of scenarios: any transformation (or composition of transformations)
resulting in a monotonically increasing (i.e. left-to-right, top-to-bottom) signal of
coordinates, when connected to this new rgbBars, would produce an image that is
consistent with the transformation.

8.4 Coordinate transformations 125

This scalable version of rgbBars is a bit tricky to get right. First off, we can
compare register Nothing x with x to find out if x has changed in the current cycle.
We would think that all that remains to do is change register 0 in the definition of
counter with regEn 0 newColumn, i.e. something like this:

scalableRGBBars1 x y = colors .!! counter
where
newColumn = changed Nothing x
counter = regEn (0 :: Index 3) newColumn $

mux (isNothing <$> x) (pure 0) (nextIdx <$> counter)

However, this version increments counter at the start of every “virtual” pixel.
For example, if we scale horizontally by 4, i.e. if we use scalableRGBBars1 with an
x signal that changes value every 4th cycle, then the value of counter will be as
follows:

Cycle x newColumn counter Output

0 Nothing False 0
1 Nothing False 0
2 Just 0 True 0 Red
3 Just 0 False 1 Green
4 Just 0 False 1 Green
5 Just 0 False 1 Green
6 Just 1 True 1 Green
7 Just 1 False 2 Blue
8 Just 1 False 2 Blue
9 Just 1 False 2 Blue
10 Just 2 True 2 Blue
11 Just 2 False 0 Red

If we started the register at maxBound instead of 0 when the visible area starts,
it would take the first increment to set it to the desired value 0. This means while
counter would still be wrong (it would lag one cycle behind the value we’d like), at
least its next-value-to-be would be correct:

Cycle x newColumn counter counterNext

0 Nothing False 2 2
1 Nothing False 2 2
2 Just 0 True 2 0
3 Just 0 False 0 0
4 Just 0 False 0 0

Chapter 8 Generative Graphics126

Cycle x newColumn counter counterNext

5 Just 0 False 0 0
6 Just 1 True 0 1
7 Just 1 False 1 1
8 Just 1 False 1 1
9 Just 1 False 1 1
10 Just 2 True 1 2
11 Just 2 False 2 2

Whenever we have a register whose value is lagging one cycle behind, we can
solve that by tapping into its new value instead of the value propagated from the
previous cycle. In general, this can be done by rewriting code of this form:

someCircuit1 = ... r ...
where
r = register x0 $ f r

into this:

someCircuit2 = ... new ...
where
r = register x0 new
new = f r

reg

f

r

(1) someCircuit1

reg

f

new

(2) someCircuit2

This transformation, together with starting from maxBound, leaves us with the
following version. Note that we can’t use regEn here, because we need the new value
counterNext to be already gated on newColumn. Thus the first mux in the definition
of counterNext.

scalableRGBBars x y = colors .!! counterNext
where
newColumn = changed Nothing x
counter = register (0 :: Index 3) counterNext

8.4 Coordinate transformations 127

counterNext =
mux (not <$> newColumn) counter $
mux (isNothing <$> x) (pure maxBound) $
nextIdx <$> counter

All this is not to say that the original rgbBars was “wrong”. Video pattern
generators need to be designed for specific use cases, and if we are building a circuit
that will generate video at the native resolution, it is perfectly fine to build a video
subsystem that exploits this fact. Moreover, supporting coordinate transformations
is not an all-or-nothing deal, but a spectrum – for example, as we have seen, rgbBars
works as-is for horizontal or vertical translations, but required some changes to work
for rescaling. Here, we present these two generally useful coordinate transformation
circuits: translation and scaling.

8.4.1 Restricting the visible area

We can restrict the physical visible area of 𝑤 × ℎ to a smaller 𝑤′ × ℎ′ by keeping
the values of the virtual X and Y coordinate signals at Nothing for some of the time
that the real X and Y coordinates are already Just values. The generic form of this
transformation masks out parts of the visible area on both sides:

maskSides
:: (KnownNat n, KnownNat m, KnownNat k)
=> (HiddenClockResetEnable dom)
=> SNat k
-> Signal dom (Maybe (Index (k + n + m)))
-> Signal dom (Maybe (Index n))

maskSides k raw = transformed
where -- Continued below

We implement maskSides by starting a Maybe (Index n) counter whenever the
raw input equals Just k. To make maskSides compose nicely with other transform-
ers, we also implement the same logic as scalableRGBBars to only increment the
counter whenever the raw input changed:

changed = register Nothing raw ./=. raw
started = raw .== Just (snatToNum k)

r = register Nothing transformed
transformed =

mux (not <$> changed) r $
mux (isNothing <$> raw) (pure Nothing) $
mux started (pure $ Just 0) $
(succIdx =<<) <$> r

Chapter 8 Generative Graphics128

We can use maskSides to define simpler combinators that mask out only the k
pixels in the beginning or the end of the visible area. We write k + n and n + k in
the type signature to be evocative of which side we’re masking out:

maskStart
:: forall k n dom. (KnownNat n, KnownNat k)
=> (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Index (k + n)))
-> Signal dom (Maybe (Index n))

maskStart = maskSides (SNat @k)

maskEnd
:: forall k n dom. (KnownNat n, KnownNat k)
=> (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Index (n + k)))
-> Signal dom (Maybe (Index n))

maskEnd = maskSides (SNat @0)

With a bit more type-level arithmetic, we can also center a smaller image on a
larger one: here, the k ~ ((n0 - n) `Div` 2 constraint is effectively a type-level let
binding for the size of the padding needed (rounded down). Because of rounding,
we don’t, in general, have n0 ~ k + n + k; instead, we set m to be the remaining
visible area. The Clash typechecker for arithmetic constraints is powerful enough
to solve n0 ~ (k + n + m). In fact, we’ve already used the solver’s power in the
definition of maskSides, where the size m of the trailing side is inferred from knowing
k, n and k + n + m. 1

center
:: forall n n0 k m dom. (KnownNat n, KnownNat n0, KnownNat k,
KnownNat m)
=> (k ~ ((n0 - n) `Div` 2), n0 ~ (k + n + m))
=> (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Index n0))
-> Signal dom (Maybe (Index n))

center = maskSides (SNat @k)

1Clash automatically enables a handful of typechecker plugins implementing painless KnownNatprop-
agation and arithmetic solvers for type-level naturals. These plugins can also be used with GHC proper,
by adding GHC.TypeLits.KnownNat.Solver, GHC.TypeLits.Extra.Solver, and GHC.TypeLits.Normalise
to the list of typechecker plugins loaded.

8.4 Coordinate transformations 129

8.4.2 Scaling

Scaling is very similar to a generalized version of scalableRGBBars: we keep an
internal counter that is incremented for every changed raw coordinate, and every
time we would “start drawing a new red bar”, the output coordinate is incremented.
We can keep doing this until the output coordinate hits its maximum value, after
which we reset it to zero the next time we enter the visible area. We also return the
“sub-pixel” coordinate for visible pixels.

scale
:: forall n k dom. (KnownNat n, KnownNat k, 1 <= k)
=> (HiddenClockResetEnable dom)
=> SNat k
-> Signal dom (Maybe (Index (n * k)))
-> (Signal dom (Maybe (Index n)), Signal dom (Maybe (Index k)))

scale k raw = (scaledNext, enable (isJust <$> scaledNext) counterNext)
where
prev = register Nothing raw
changed = raw ./=. prev

counter = register 0 counterNext
counterNext =

mux (not <$> changed) counter $
mux (isNothing <$> prev) (pure 0) $
nextIdx <$> counter

scaled = register Nothing scaledNext
scaledNext =

mux (not <$> changed) scaled $
mux (counterNext .== 0) (maybe (Just 0) succIdx <$> scaled) $
scaled

The order of type variables is carefully chosen so that we can write scale @n in
cases where the input and the output types wouldn’t be constrained otherwise; for
example, this allows us to write scale @n (SNat @k) . center to transform 𝑛 to
𝑚 ≥ 𝑘 ∗ 𝑛 by making each pixel 𝑛 times larger, and then sufficient padding on both
sides.

Exercises:

• Write a 2D version of rgbBars, i.e. something that shows 9 different colors in
a repeating, 3 × 3 tile. Hint: the vertical divide-by-3 counter should only be
incremented at the end of each scanline.

Chapter 8 Generative Graphics130

• Combine two or more pattern generators by showing them in different parts
of the screen. A simplest version would be showing rgbwBars on one half
and rgbBars on the other half; for a more interesting challenge, try to de-
fine multiple window-like rectangles on the screen, each showing a different
pattern.

• Change the bouncing ball circuit to internally use a resolution of 300 × 200,
and render that to a 640 × 480 VGA mode by scaling up by two and centering
horizontally and vertically.

• The above change leaves a border 20 pixels wide on both sides and 40 pixels
high on the top and the bottom. Render these areas in some distinctive color,
without changing anything in the definition of bouncingBalls.

8.5 Animation, differently

One drawback of writing bouncingBalls in the above style is that the full circuit is
described as a monolithic function mapping signals to signals; as a consequence, it
can be arbitrarily stateful. In this section, we rewrite it in a more principled way
that will lend itself to high-level simulation.

The basic idea behind the restructuring is to split bouncingBalls into two func-
tions: a state transition function (the “bouncing”) and a drawing function (the
“balls”). Both of these are pure functions, with the state explicitly passed between
them by the top-level circuit via a register. This is similar to the calculator from
chapter 6.

In the calculator circuit, the state transition was triggered by user input. Ani-
mation, however, happens in real-time: the ball continues bouncing around on its
own. We will use the start of the vertical blanking period to trigger for the state
transition once for each frame, 60 times a second. This avoids potential graphical
glitches that could occur if, for example, the ball position would be updated just at
the same time as we are drawing its current position.

Moreover, although not a concern for our bouncing ball toy, for a more compli-
cated machine it might take several cycles to compute a full state update; by starting
just at the beginning of the vertical blanking period, we give us the most cycles pos-
sible before starting to draw the next frame.2 For this reason, arcade machines and
home computers generally have some way of signaling from the video subsystem
to the CPU when the current frame is finished. In this computer-less circuit, we will
simply consume the Y coordinate output of the video controller directly.

2Technically, we could start even a bit earlier, when the horizontal blanking period of the last line
starts. The reason we aim for the start of the vertical blanking is to make the trigger logic simpler.

8.5 Animation, differently 131

Putting it all together, our design will be as follows:

VGA

vgaY

vgaX

draw RGB

HSYNC / VSYNC

frameEnd

state
enupdateState

• A VGA controller generates the sync outputs and provides the rest of the
circuit with the coordinates of the currently drawn pixel

• The animation state is stored in a register that is updated whenever the cur-
rently drawn frame ends.

• The drawing circuit takes the current state and the current video coordinates.
By comparing the video coordinate to the ball’s current position, it calculates
the object at the current coordinate, which determines the color of the currently
drawn pixel.

Since we have already written a VGA controller, the only parts we need to write
are the following definitions:

• data St, the animation state.
• updateState :: St -> St, the state transition function.
• draw :: St -> Index 640 -> Index 480 -> (Unsigned r, Unsigned g, Unsigned b),

the drawing function.

As with the calculator, none of these parts use Clash Signals in their interface.
We will exploit this property by assembling the same parts into a software imple-
mentation alongside the hardware one.

Chapter 8 Generative Graphics132

8.5.1 Animation state

Our only state is the ball position, stored in two pairs of Coords to represent the
ball’s position and speed horizontally and vertically. We generate lenses here which
we will use when writing updateState. The size of Coord is chosen to fit not
only ScreenWidth and ScreenHeight, but also the intermediate calculations during
reflect.

type Coord = Signed 10

data St = MkSt
{ _ballH, _ballV :: (Coord, Coord)
}
deriving (Show, Generic, NFDataX)

makeLenses ''St

initState :: St
initState = MkSt

{ _ballH = (10, 2)
, _ballV = (100, 3)
}

To future-proof our code somewhat, we also create a datatype for the animation’s
parameters; in this case, the only parameter is the ball size. This will be useful for
one of the exercises later on.

data Params = MkParams
{ ballSize :: Coord
}
deriving (Show, Generic, NFDataX)

defaultParams :: Params
defaultParams = MkParams

{ ballSize = 35
}

Since the bouncing ball is autonomous, there is no user input to updateState.
We write it using the State monad so that we can compose bounceBetween
for the vertical and the horizontal axis by zooming on the relevant fields of
St. This is, arguably, overkill compared to something like \(St x y) ->
St (bounceBetween (0, w) x) (bounceBetween (0, h) y). However, when we
move on to implementing more complex circuits, like a full-blown Pong game in
the next chapter, we will need this flexibility for some of the stateful calculations
like detecting the collision between the ball and the paddle. Note that we subtract

8.5 Animation, differently 133

ballSize from the higher boundaries (bottom and right), since the coordinates
stored in the state represent the ball’s top-left corner.

updateState :: Params -> St -> St
updateState params@MkParams{..} = execState $ do

zoom ballV $ modify $ bounceBetween (0, screenHeight - ballSize)
zoom ballH $ modify $ bounceBetween (0, screenWidth - ballSize)

Although we could make the screen size a parameter, here we go a different
route to ensure that the ball stays exactly in the visible area: screenWidth and
screenHeight are reflected from type-level constants which we will also use in the
type of draw:

type ScreenWidth = 640
type ScreenHeight = 480

screenWidth :: Coord
screenWidth = snatToNum (SNat @ScreenWidth)

screenHeight :: Coord
screenHeight = snatToNum (SNat @ScreenHeight)

8.5.2 Drawing

We implement drawing by writing a pure function that is only concerned with vis-
ible pixels. For the color channels, although the final output is limited in depth by
the targeted hardware platform, here we use Word8 for each channel for 24-bit colors.
This allows us to specify the colors we’d like, not just the ones we can have; the latter
can be derived trivially in topEntity by just truncating the lowermost bits. However,
using Word8 will make simulation performance dramatically better. That is because
conversions like bitCoerce :: Unsigned 8 -> Word8, while a no-op in a real hard-
ware circuit, involves a significant simulation overhead, so we are better off if we
can avoid it three times for each pixel during simulation. By defining Color this way,
we only have coercions in the other direction, bitCoerce :: Word8 -> Unsigned 8,
in topEntity which is outside the context of our high-level simulation.

type Color = (Word8, Word8, Word8)

draw :: Params -> St -> Index ScreenWidth -> Index ScreenHeight -> Color
draw MkParams{..} MkSt{..} ix iy

| isBall = yellow
| otherwise = gray

where -- Continued below

Chapter 8 Generative Graphics134

This leaves us with only the problem of calculating if a given (ix, iy) coordinate
is within the area where we want the ball to be visible. Later, more complete versions
of draw will have exactly the same structure, just with more branches for isWall and
isPaddle.

The workhorse function of isBall and similar definitions is determining if the
current pixel is within a given axis-aligned rectangle. But first, we convert ix and
iy to Coords to be compatible with St’s fields.

x = fromIntegral ix
y = fromIntegral iy

z `between` (lo, hi) = lo <= z && z <= hi
rect (x0, y0) (w, h) =

x `between` (x0, x0 + w) &&
y `between` (y0, y0 + h)

Given these definitions, we can write isBall simply by checking if the current
pixel is in a ballSize × ballSize rectangle starting at the ball position:

(ballX, _) = _ballH
(ballY, _) = _ballV

isBall = rect (ballX, ballY) (ballSize, ballSize)

8.5.3 The top-level circuit

Let’s take stock of the components we have written so far:

• data St is our state, which we want to keep in a register.
• updateState is the state transition function, which should be used to update

the register at each frameEnd
• draw is the drawing function which calculates the color of the currently ren-

dered, visible pixel

Components we need to assemble it into a full circuit:

• A VGA controller to generate the sync signals and to keep track of which pixel
is currently rendered, if any.

• A signal frameEnd :: Signal _ Bool that fires at the end of each frame, to
trigger the state register’s update. This can be implemented by checking the
Y coordinate output of the VGA controller ceasing to be isJust, since that
means we have left the last visible line.

8.6 High-level simulation with SDL2 135

With these considerations, and using a 25.175 MHz clock as before for our chosen
VGA mode, the full top-level circuit is as follows:

createDomain vSystem{vName="Dom25", vPeriod = hzToPeriod 25_175_000}

topEntity
:: "CLK_25MHZ" ::: Clock Dom25
-> "RESET" ::: Reset Dom25
-> "VGA" ::: VGAOut Dom25 8 8 8

topEntity = withEnableGen $ vgaOut vgaSync rgb
where
VGADriver{..} = vgaDriver vga640x480at60
frameEnd = isFalling False (isJust <$> vgaY)

st = regEn initState frameEnd $ updateState defaultParams <$> st

rgb = fmap (maybe (0, 0, 0) bitCoerce) $
liftA2 <$> (draw defaultParams <$> st) <*> vgaX <*> vgaY

Since all our changes in this section so far were just shuffling around parts
of the previous bouncing ball circuit, it shouldn’t be a surprise that compiling,
synthesizing, and uploading this circuit to an FPGA will result in the same video
output as before. So, what was the point?

8.6 High-level simulation with SDL2

Restructuring our circuit into two separate, pure functions, one for the state transi-
tion and the other to implement drawing, pays dividends when we want to write a
simulator for it. Just like in the calculator project, here we can exploit the structure of
our code by assembling updateState and draw differently, into a sequential, stateful
program that does the following:

0. Create a window with a backing texture of size 640 × 480.
1. Poll for any potential user input; exit if the window is closed.
2. Pass the current state and all possible coordinate pairs (0, 0), (0, 1), . . . , (639, 479)

to draw and record its output into the texture.
3. Apply updateState to the state and the interpretation of the input events.
4. If we have some time left out of the 1/60 of a second frame time, sleep for the

remainder.
5. Repeat from step 1.

We are going to use SDL2 to take care of the nitty-gritty of opening windows and
polling keyboard events in whatever operating system we use. SDL2 is a mature

Chapter 8 Generative Graphics136

cross-platform library with good Haskell bindings that don’t get in the way.

8.6.1 Hello, SDL2!

Before jumping head-first into connecting draw and updateState to SDL2, let’s write
a standalone program that uses SDL2 to open a window, draw some pixels, and
waits for a keypress before shutting down. This will show us all we need to know
about SDL2, and the rest will be up to us.

import SDL
import Data.Word

-- These are needed since textures are accessed through pointers
import Foreign.Ptr
import Foreign.Storable

We start main by initializing SDL and creating a window. The window size is
scaled from the intended virtual screen size; we use a screen size with a resolution
of just 24 × 18 so that we can easily see the result of drawing a single pixel. The
window itself will have size 720 × 540.

screenSize = V2 24 18
screenScale = 30

main :: IO ()
main = do

initializeAll
window <- createWindow "Hello, SDL2!" defaultWindow
windowSize window $= (screenScale *) <$> screenSize
withTexture <- setupTexture window

forever $ withTexture drawHello
where -- Continued below

In setupTexture, we attach a renderer and a texture to the window. We want an
efficient way of drawing individual pixels, and that is exactly what the texture gives
us. Most of the parameters here are not important for us, and we use some sensible
default values. As we will see, the RGB888 texture format is perhaps not exactly what
its name suggests, but still the closest to our needs. The TextureAccessStreaming
argument ensures we can get direct read-write access to the pixel data underlying
the texture.

Given this renderer and texture, we can ask SDL for a raw texture pointer
and manipulate pixels through it using the lockTexture / unlockTexture API. The
callback function drawTo is given a Ptr () to the beginning of the texture, and an

8.6 High-level simulation with SDL2 137

Int which is the rowstride, i.e. the pointer difference (in bytes) between the location
of two pixels that are vertical neighbors.

setupTexture window = do
renderer <- createRenderer window (-1) defaultRenderer
texture <- createTexture renderer RGB888 TextureAccessStreaming

screenSize

return $ \drawToTexture -> do
(ptr, stride) <- lockTexture texture Nothing
drawToTexture ptr (fromIntegral stride)
unlockTexture texture
SDL.copy renderer texture Nothing Nothing
present renderer

Now we can get creative in drawHello. This is the point where we need to
understand the RGB888 texture format. The name would suggest that it uses three
bytes per pixel, storing red, green, blue, then next pixel’s red, and so on. Instead,
each pixel is stored in four bytes, in machine byte order, with the fourth one unused.
Accordingly, on a little-endian machine, we can write a version of drawHello that
sets a single pixel at (10, 5) to red by accessing each color byte separately in reverse
(blue-green-red) order:

drawHello :: Ptr () -> Int -> IO ()
drawHello ptr rowstride = do

pokeElemOff rowptr (x * 4 + 0) b
pokeElemOff rowptr (x * 4 + 1) g
pokeElemOff rowptr (x * 4 + 2) r

where
(x, y) = (10, 5)
(r, g, b) = (0xf0, 0x50, 0x50) :: (Word8, Word8, Word8)
rowptr = plusPtr ptr $ rowstride * y

This works, but it depends on the machine endiannness and in general just feels
awkward. The reason for that is we are going against the grain here: SDL’s intended
texture access is via 32-bit values. If we change drawHello to write the color as
a single Word32, not only does the code become cleaner, it will also have better
performance once we move to changing more pixels than just one.

drawHello :: Ptr () -> Int -> IO ()
drawHello ptr rowstride = forM_ points $ \((x, y), rgb) -> do

let rowptr = plusPtr ptr $ rowstride * y
pokeElemOff rowptr x (rgb :: Word32)

where

Chapter 8 Generative Graphics138

points =
[((3,5), red)
, ((12,15), yellow)
, ((20, 3), blue)
]

red = 0xf0_50_50
yellow = 0xf0_e0_40
blue = 0x40_80_f0

We can now run our program and marvel at the window showing our abstract art:

However, there is no nice way to exit our program; the only thing we can do is
kill its process. This is because our main loop runs forever, with no way to exit.
Instead of running it in IO, we will run it in MaybeT IO, so that we can exit the forever
loop at any time by calling mzero. Luckily, SDL’s API is already polymorphic over
the base monad, so we don’t have to wrap everything in liftIO calls.

Let’s replace the main loop with something that only runs until we get an event
from SDL that should prompt us to quit:

runMaybeT $ forever $ do
events <- pollEvents
keyDown <- getKeyboardState
let shouldQuit =

any isWindowCloseEvent events ||
keyDown ScancodeEscape

guard $ not shouldQuit
liftIO $ withTexture drawHello32

8.6 High-level simulation with SDL2 139

Here, shouldQuit will be set to True if any of the latest events is a notification
that the main window was closed, or if the Esc key is pressed.

isWindowCloseEvent ev = case eventPayload ev of
WindowClosedEvent{} -> True
_ -> False

This concludes our introduction to SDL2: we are now ready to connect our
bouncing ball functions to texture drawing routines.

8.6.2 A reusable SDL2 simulator framework

Here we tweak our Hello World example to factor out the parts that will need to
depend on the particulars of the simulated design:

• How the internal state is managed
• How input events [Event] and key states Scancode -> Bool are processed
• How the screen texture is updated

We will abstract over internal state management by allowing the simulation to
happen in any MonadIO m. Input events and key states are going to be passed as
simple function parameters.

For the screen texture update, we want to allow versatility to get good perfor-
mance based on the access pattern (i.e. we want to expose the underlying texture
directly), but also use types to track the screen size to rule out malformed index-
ing. We achieve this by making an abstract type Rasterizer indexed by the screen
dimensions, and providing a library of trusted Rasterizer values for various use
cases.

newtype Rasterizer (w :: Nat) (h :: Nat) = Rasterizer
{ runRasterizer :: Ptr () -> Int -> IO () }

Armed with this type, we can write a function that wraps the simulator in an
environment where we keep running it as long as it returns the rasterizer for the
current frame. This allows the simulator to decide to quit on its own. The only
“free” parameters we have left are the window title and the screen scaling factor,
since these are not inferrable from the types.

data VideoParams = MkVideoParams
{ windowTitle :: Text
, screenScale :: CInt
, screenRefreshRate :: Word32
}

Chapter 8 Generative Graphics140

withMainWindow
:: forall w h m. (KnownNat w, KnownNat h, MonadIO m)
=> VideoParams
-> ([Event] -> (Scancode -> Bool) -> MaybeT m (Rasterizer w h))
-> m ()

The implementation of withMainWindow is very similar to the Hello World pro-
gram; we simply pass to withTexture a drawing function that runs the Rasterizer
returned by the simulation.

withMainWindow MkVideoParams{..} runFrame = do
initializeAll
window <- createWindow windowTitle defaultWindow
windowSize window $= fmap (screenScale *) screenSize

withTexture <- setupTexture window
let render rasterizer = withTexture $ \ptr rowstride ->

liftIO $ runRasterizer rasterizer ptr rowstride

runMaybeT $ forever $ do
events <- pollEvents
keyDown <- getKeyboardState
let windowClosed = any isWindowCloseEvent events
guard $ not windowClosed
rasterizer <- runFrame events keyDown
render rasterizer

destroyWindow window
where
screenSize = V2 (snatToNum (SNat @w)) (snatToNum (SNat @h))

setupTexture window = ... -- as before

Once the main loop finishes (because windowClosed or the simulation exits with
mzero), we clean up the window by calling destroyWindow; this wasn’t needed for
our stand-alone Hello World program, since getting out of the the forever finishes
the whole process anyway, cleaning everything up; but here we are building a
library, so we have no control over whether clients will want to do other stuff after
withMainWindow finishes.

There is nothing yet in our code that would lock it to 60 frames per second (or
whatever else the refresh rate of a given circuit is). There’s nothing we can easily do
about it if our software simulation takes more than 1/60𝑡ℎ of a second, but if runFrame
and render, taken together, take less time to run than the intended frame time, we
can just sleep for the remaining frame time. To this end, we add the combinator

8.6 High-level simulation with SDL2 141

atFrameRate, which record the time (as measured, in milliseconds, by SDL’s tick
function) before and after the computation for a given frame. waitFrame then
converts both the frame rate and the before/after time stamp into microseconds,
suitable for threadDelay.

atFrameRate :: (MonadIO m) => Int -> m a -> m a
atFrameRate frameRate act = do

before <- ticks
x <- act
after <- ticks
waitFrame frameRate before after
return x

waitFrame :: (MonadIO m) => Int -> Word32 -> Word32 -> m ()
waitFrame frameRate before after = when (slack > 0) $ liftIO $

threadDelay slack
where
frameTime = 1_000_000 `div` frameRate
elapsed = fromIntegral $ 1000 * (after - before)
slack = frameTime - elapsed

Armed with atFrameRate, we simply replace our main loop’s forever $ do ...
with forever $ atFrameRate screenRefreshRate $ do

We conclude our reusable simulator by writing a Rasterizer for combinational
pattern generators: we iterate y through all possible values of Index h, calculate the
pointer for each row using the row stride, and then poke the result of computing
the pattern’s color value starting from that pointer, 32-bit value by 32-bit value:

{-# INLINE packColor #-}
packColor :: Color -> Word32
packColor (r, g, b) =

fromIntegral r `shiftL` 16 .|.
fromIntegral g `shiftL` 8 .|.
fromIntegral b `shiftL` 0

rasterizePattern
:: (KnownNat w, KnownNat h)
=> (Index w -> Index h -> Color)
-> Rasterizer w h

rasterizePattern draw = Rasterizer $ \ptr rowstride -> do
for_ [minBound..maxBound] $ \y -> do

let rowPtr = plusPtr ptr $ fromIntegral y * rowstride
for_ [minBound .. maxBound] $ \x -> do

pokeElemOff rowPtr (fromIntegral x) (packColor $ draw x y)

Chapter 8 Generative Graphics142

8.6.3 Let's see some bouncing balls finally!

Now that we’ve built up the infrastructure, it is time for the payoff: running our
circuit design’s updateState and draw functions and seeing their results on our
screen in real time.

The idea is to pick StateT St IO as the monad we pass to withMainWindow. This
takes care of holding on to the state from one frame to the next. Since withMainWindow
wraps it in a MaybeT, we also have access to the effect of early termination, which
we can use to implement a custom exit command. In this example, we will use the
Esc key as an exit trigger.

To get back to vanilla IO for main, we simply use evalStateT to run the
StateT St IO () returned by withMainWindow. We have arranged the types
of updateState and draw to minimize impedance mismatch with the StateT
combinators and with rasterizePattern:

main :: IO ()
main =

flip evalStateT initState $
withMainWindow videoParams $ \events keyDown -> do

guard $ not $ keyDown ScancodeEscape

modify $ updateState defaultParams
gets $ rasterizePattern . draw defaultParams

where
videoParams = MkVideoParams

{ windowTitle = "Bouncing Ball"
, screenScale = 2
, screenRefreshRate = 60
}

And that’s it!

Exercises:

• Tweakable parameters. Instead of passing the defaultParams to updateState
and draw, change it into a proper signal. Connect some toggle switches as
input to change the ball size mid-game.

• Extend the SDL simulator to generate the toggle switch state from keyboard
events. For example, hook up the number keys 1 to 8 to each flip one
virtual toggle switch.

• Similar to the earlier exercise, change this new version of the bouncing balls
circuit to run in a virtual resolution of 300 × 200 pixels, scaled by two and

8.7 Summary 143

centered. The software simulation should render into a 300 × 200 window,
and the hardware circuit will need to handle Nothing coordinates by drawing
some nice border / background, passing Just the valid virtual coordinates to
draw.

8.7 Summary

• A video pattern generator is a potentially stateful circuit mapping coordi-
nates to colors. By default, the video controller’s coordinate output is con-
nected directly to the pattern generator’s input, but we can put coordinate
transformers between them.

• Just like in the calculator project, if we structure our design around a state
transition function and a pure output function, this allows us to create a
high-level simulation by hooking into the “interesting” parts of our design.

• For interactive, real-time designs with video output, such as video games,
sampling input and updating the state once per frame is a natural and easily-
implemented solution.

• The SDL2 library provides an easy, robust and performant way of rendering
pixel-based graphics, which can be used to simulate video output in real
time.

9Project: Pong
In this chapter, we answer the call of the bouncing ball example circuit from the
previous chapter, and build our own version of Pong, one of the earliest video
games.

The original Pong didn’t run on a computer: instead, its game logic and its
video output was all implemented directly as a circuit of discrete components. Our
version will also be computer-less; however, rather than building a rat’s nest of
connected registers, we will apply the same principled design as we did in the
Calculator project.

9.1 What is Pong?

Pong is a very minimalistic video game simulation of tennis. Players control paddles
on the sides of the screen, by moving them vertically. A ball is bouncing between
the paddles and the top and bottom edges of the screen. The aim of the player is
to not let the ball go out of bounds on their side. In the original two-player version,
there are two paddles, one for each player. Here, we will build a solitaire version
first, and leave the two-player version as an exercise. Basically, our game is going to
be the squash equivalent to Pong’s tennis.

Wall

BallBall Paddle

From the outside point of view, Pong is a circuit which outputs a video signal

145

Chapter 9 Project: Pong146

and connects to inputs for paddle control. We will use two pushbuttons for moving
the paddle up or down, and generate VGA in 640 × 480@60 mode for the video
output. Just for the fun of it, and to give it that nice chunky retro look, the game
itself will only use 256× 200 resolution, which we will scale up by two and centered
it on the screen.

9.2 Top-level design

Internally, we will follow the same design as the bouncing ball toy: a register holding
the state, a state transition function consuming input, and a drawing function that
takes the current state, and turns it into output.

Putting it all together, our design will be as follows:

VGA

vgaY
scale . center

scale . center
vgaX

draw

x

y
RGB

HSYNC / VSYNC

frameEnd

state
enupdateState

BTN_UP

BTN_DOWN

This is the same design as the bouncing ball one, with an added coordinate
transformation to end up with a drawing area of 256 × 200, and input from the
outside world in the form of the two pushbuttons controlling the paddles.

With all this groundwork laid, it is time to work out the missing details:

• data Inputs, a record that holds all user inputs
• data St, the game state
• updateState :: Inputs -> St -> St, the state transition function
• draw :: St -> Index 256 -> Index 200 -> Color, the drawing function

9.2 Top-level design 147

Once these are filled in, our topEntity will mostly match that of the bouncing
ball circuit:

data Inputs = MkInputs
{ paddleUp :: Bool
, paddleDown :: Bool
}

type ScreenWidth = 256
type ScreenHeight = 200

topEntity
:: "CLK_25MHZ" ::: Clock Dom25
-> "RESET" ::: Reset Dom25
-> "BTN_UP" ::: Signal Dom25 (Active High)
-> "BTN_DOWN" ::: Signal Dom25 (Active High)
-> "VGA" ::: VGAOut Dom25 8 8 8

topEntity = withEnableGen board
where
board (fmap fromActive -> up) (fmap fromActive -> down) = vgaOut
vgaSync rgb
where

VGADriver{..} = vgaDriver vga640x480at60
frameEnd = isFalling False (isJust <$> vgaY)

params = defaultParams
inputs = MkInputs <$> up <*> down

st = regEn initState frameEnd $
updateState params <$> inputs <*> st

rgb = fmap (maybe (0, 0, 0) bitCoerce) $
liftA2 <$> (draw params <$> st) <*> x <*> y

where
(x, _) = scale (SNat @2) . center $ vgaX
(y, _) = scale (SNat @2) . center $ vgaY

Accordingly, the SDL-based simulator’s main function also remains mostly the
same. We increase the scaling factor to 4, since the virtual screen we are simulating
now is only 256× 200 pixels – remember, the transformation to 640× 480 takes place
only in topEntity, as a measure to convert to a standard video format that real-world
screens can understand. This conversion is morally no different from converting
the Active High pushbutton values to a semantic Bool, so we put it outside draw.

Chapter 9 Project: Pong148

main :: IO ()
main =

flip evalStateT initState $
withMainWindow videoParams $ \events keyDown -> do

guard $ not $ keyDown ScancodeEscape

let params = defaultParams
modify $ updateState params $ MkInputs

{ paddleUp = keyDown ScancodeUp
, paddleDown = keyDown ScancodeDown
}

gets $ rasterizePattern . draw params
where
videoParams = MkVideoParams

{ windowTitle = "Pong"
, screenScale = 4
, screenRefreshRate = 60
}

To recap, the signatures of the remaining parts to implement are:

data St

updateState :: Params -> Inputs -> St -> St
draw :: Params -> St -> Index ScreenWidth -> Index ScreenHeight -> Color

9.3 What is our state?

Compared to just a ball bouncing around in the emptiness of a video screen, a game
of Pong is similar in some ways and different in others:

• There is a ball bouncing around in both cases. Our State will need to hold the
ball’s position and speed just like before.

• Pong has another moving part: the paddle. Since it can only be moved
vertically, only its Y position needs to be stored.

• We want to draw the ball as before, but of course we also want to draw the
paddle (at the right position). To emphasize to the player that it is their
responsibility to hit the ball back from the right-hand edge, we will also draw
walls around the other three edges of the screen.

• Pong is interactive: the player can move the paddle up or down. We take care
of this by adding an extra Inputs parameter to updateState.

9.3 What is our state? 149

• There is also some complicated interaction between the ball and the paddle.
At the minimum, the ball bounces off the paddle when it hits it; but that
alone makes for a very boring variant of Pong. We will spice it up a notch by
allowing the paddle to nudge the ball vertically, if the paddle itself is moving
vertically at the moment of contact.

• Pong is a game with a goal: to avoid the ball leaving the playfield by flying
off to the right. We should give some kind of indication of failure when that
happens: we will flash the background color in red for one frame.

Based on this analysis, it is clear that St should extend the horizontal and vertical
speed-and-position of the ball with a vertical paddle position, and a flag denoting if
we should draw the background in the given frame in red. updateFlag will always
clear that flag (unless, of course, the ball is just now leaving the game area); this
ensures that it will flash for one frame only.

type Coord = Signed 10

data St = MkSt
{ _ballH, _ballV :: (Coord, Coord)
, _paddleY :: Coord
, _gameOver :: Bool
}
deriving (Show, Generic, NFDataX)

makeLenses ''St

initState :: St
initState = MkSt

{ _ballH = (10, 2)
, _ballV = (100, 3)
, _paddleY = 100
, _gameOver = False
}

The Params datatype likewise extends the ball size with new fields for the width
of the walls and the size of the paddle. We also need to know how much to move
the paddle on each frame if the user is holding one of the input buttons, and how
much nudge should be applied to the ball when hitting it with a moving paddle.

data Params = MkParams
{ wallSize, ballSize :: Coord
, paddleHeight, paddleWidth :: Coord
, paddleSpeed, nudgeSpeed :: Coord
}

Chapter 9 Project: Pong150

defaultParams :: Params
defaultParams = MkParams

{ wallSize = 5
, ballSize = 5
, paddleHeight = 50
, paddleWidth = 5
, paddleSpeed = 3
, nudgeSpeed = 3
}

9.3.1 updateState

If we know what is in our state, we also know how to update it: we just update
every component of it, using appropriate helper functions. The devil will be in the
details of them, but we can keep this top-level updateState simple:

updateState :: Params -> Inputs -> St -> St
updateState params inp = execState $ do

updateBall params inp
updatePaddle params inp
checkBounds params

Updating the ball is very similar to our previous code: we update its horizontal
and vertical position and speed separately. Vertically, there is no extra complication;
but horizontally, we need to include the paddle as a reflector only if the ball is
(vertically) where the paddle is. Moreover, to implement nudging the ball on a hit
with the paddle, we need to detect that collision; so we will extend reflect slightly
to return an additional Bool denoting collisions.

reflect
:: (Num a, Num a', Ord a, Ord a')
=> (a, a')
-> (a, a')
-> (Bool, (a, a'))

reflect (p, n) (x, dx)
| sameDirection n dist = (True, (p + dist, negate dx))
| otherwise = (False, (x, dx))

where
sameDirection u v = compare 0 u == compare 0 v
dist = p - x

9.3 What is our state? 151

We will use reflect and move in our State St monad, so let’s use a shorthand
for their lifted versions:

moveM :: (Num a) => State (a, a) ()
moveM = modify move

reflectM
:: (Num a, Num a', Ord a, Ord a')
=> (a, a') -> State (a, a') Bool

reflectM = state . reflect

This gives us everything to implement updateBall:

• updateVert simply moves the ball and checks for reflections from the top and
bottom walls:

updateVert :: Params -> State St ()
updateVert MkParams{..} = void $ do

zoom ballV $ do
moveM
reflectM (wallSize, 1)
reflectM (screenHeight - wallSize - ballSize, -1)

• updateHoriz looks at the vertical position to see we are at the height of the
paddle, and decides based on that whether to include a second reflector on
the right-hand size.

updateHoriz :: Params -> State St Bool
updateHoriz MkParams{..} = do

atPaddle <- do
y0 <- use paddleY
(y, _) <- use ballV
return $ y `between` (y0 - ballSize, y0 + paddleHeight)

zoom ballH $ do
moveM
reflectM (wallSize, 1)
if not atPaddle then return False
else reflectM (screenWidth - paddleWidth - ballSize, -1)

• updateBall itself runs updateVert and updateHoriz, and changes the vertical
ball speed if updateHoriz returns True, i.e. if there was a collision with the
paddle:

Chapter 9 Project: Pong152

updateBall :: Params -> Inputs -> State St ()
updateBall params@MkParams{..} MkInputs{..} = do

updateVert params
hitPaddle <- updateHoriz params
when hitPaddle $ ballV._2 += nudge

where
nudge | paddleDown = nudgeSpeed

| paddleUp = negate nudgeSpeed
| otherwise = 0

Compared to the complicated logic of checking for bounces and paddle hits,
updating the paddle’s state is much simpler: we increase or decrease paddleY by
paddleSpeed depending on which input buttons are held in the given frame, and
then ensure it stays in the playfield:

updatePaddle :: Params -> Inputs -> State St ()
updatePaddle MkParams{..} MkInputs{..} = do

when paddleUp $ paddleY -= paddleSpeed
when paddleDown $ paddleY += paddleSpeed
paddleY %= clamp (wallSize, screenHeight - (wallSize + paddleHeight))

clamp :: (Ord a) => (a, a) -> a -> a
clamp (lo, hi) = max lo . min hi

To detect the ball going out of bounds, we simply check if its X coordinate is
larger than the screen width. This way, even after the ball passes the point of no
return at the edge of the paddle, we will keep drawing it until it fully leaves the
screen – increasing the player’s frustration just a bit more.

It is here that we set the gameOver field of the state. As mentioned earlier, this
field is set to True only for the duration of the single frame when the ball actually
flies out of bounds – in the next frame, the ball is already reset into the middle of
the playfield (keeping its current speed and Y coordinate).

checkBounds :: Params -> State St ()
checkBounds MkParams{..} = do

outOfBounds <- zoom ballH $ gets $ \(x, _) -> x > screenWidth
gameOver .= outOfBounds
when outOfBounds resetBall

where
resetBall = ballH._1 .= half screenWidth

9.4 Drawing 153

9.4 Drawing

The main structure of draw is very similar to the bouncing ball example: we just
have more shapes to check against the current raster beam position.

draw :: Params -> St -> Index ScreenWidth -> Index ScreenHeight -> Color
draw MkParams{..} MkSt{..} ix iy

| isWall = white
| isPaddle = blue
| isBall = yellow
| otherwise = if _gameOver then red else gray

where
x = fromIntegral ix
y = fromIntegral iy

rect (x0, y0) (w, h) =
x `between` (x0, x0 + w) &&
y `between` (y0, y0 + h)

-- Continued below

The definitions of the individual shapes are all straightforward: the paddle and
the ball are rectangles, and each wall is an even simpler comparison.

isWall = or
[x < wallSize
, y < wallSize
, y >= screenHeight - wallSize
]

paddleStart = screenWidth - paddleWidth
isPaddle = rect (paddleStart, _paddleY) (paddleWidth, paddleHeight)

(ballX, _) = _ballH
(ballY, _) = _ballV
isBall = rect (ballX, ballY) (ballSize, ballSize)

For completeness’s sake, here are some RGB values for these colors that hopefully
won’t hurt the player’s eyes too much:

white, blue, yellow, red, gray :: Color
white = (0xff, 0xff, 0xff)
blue = (0x40, 0x80, 0xf0)
yellow = (0xf0, 0xe0, 0x40)
red = (0x80, 0x00, 0x00)
gray = (0x30, 0x30, 0x30)

Chapter 9 Project: Pong154

By plugging these definitions of St, updateState, and draw into our topEntity
and main, we finish our implementation of (solitaire) Pong, including an interactive
SDL simulation.

Exercises:

• On each successful hit, flash the part of the physical screen that is outside the
playing area of the virtual screen.

• Increase difficulty as the game goes on by decreasing the paddle size on every
𝑘𝑡ℎ successful hit, up to a reasonable minimum paddle size.

• Draw the ball as a more round shape.

• Keep score. Drawing numerals would be quite hard with what we have so far,
but we could e.g. draw a progress bar counting up to 10 misses.

• Two-player mode. This should be quite self-explanatory: hook up two more
buttons to move a second, left-hand side paddle up and down. The score
could be displayed as a tug-of-war progress bar.

• A fun variant of two-player Pong is to give a third “boost” button to both
players, and scale up the ball’s speed by two if exactly one of the players is
holding their boost button.

9.5 Summary

• Starting with the implementation of the bouncing ball circuit, the only struc-
tural change is adding an input signal.

• The rest of the changes are in the definition of the state datatype and its
transition function. These are all “normal”, pure Haskell parts that we just
happen to use in the context of a Clash circuit.

10Asynchronous Serial Communication

Serial communication is when a one-bit channel is used to transmit data bit by
bit. It can be thought of as a kind of temporal 𝑛-to-1 multiplexing where 𝑛 is the
number of bits transmitted. In serial communication however, the 𝑛 is usually not
fixed upfront; instead, transmission happens either continuously, or whenever new
data is ready to be sent. Its main advantage compared to parallel communication is
the lower number of wires needed. In this book, we are going to implement serial
communication to interface with other devices that already use some kind of serial
protocol, so we don’t really have much say in the matter: if we want to talk to those
devices, we have to talk serial.

10.1 Synchronicity

To make serial communication work, the transmitter and the receiver has to have
some kind of shared notion of time. To see why, imagine a serial protocol that just
says “keep changing the one-bit channel to the next bit of the message”. If the
receiver side observes the channel’s value being high for 1 second and low for 1
second, is that meant to correspond to the bit stream 0b10, or 0b1100 or 0b111000,
or 0b11111100 because the transmitter decided to take things a bit slower after the
first six bits?

The two solutions to this problem is either for the sender and the receiver to agree
on a transmission speed (so-called asynchronous serial communication), or to add
a second clock line that signals when the data line has a new value (synchronous
serial communication). Depending on the details of the protocol, the clock signal
may be generated either by the transmitter or the receiver side.

Let’s see how our example of a 1 second high level followed by 1 second low
level would be disambiguated into a stream of bits using either an asynchronous
or a synchronous protocol. In the first case, let’s say the protocol prescribes a
transmission period of 250 ms per bit. Then the receiver would know that the full 1
second of a high level would mean 4 high bits:

155

Chapter 10 Asynchronous Serial Communication156

0 s 1 s 2 s

1 1 1 1 0 0 0 0

In the second case, suppose the protocol says to use a falling-edge clock, i.e. the
data line is sampled by the receiver at every time the clock line goes from high to low.
Then, the following constellation of clock and data signals would correspond to the
bit sequence 0b11100. Note that in this example, the clock signal isn’t completely
regular; the data line is sampled according to the clock line, not according to the
real passage of time.

Data

Clock

1 1 1 0 0

In this chapter, we will implement the so-called Universal Asynchronous Serial
Communication protocol, which we will use to communicate with “normal” comput-
ers outside the FPGA. Later, in chapter 16, we will implement the synchronous PS/2
protocol to interface with keyboards.

10.2 Universal Asynchronous Serial Communication

As the “universal” part of its name implies, this is a whole family of serial communi-
cation protocols. Our interest in this family is because it provides a straightforward
way to communicate with other computers; in particular, the personal computer
we’re using to develop and compile our Clash code. Even though PCs moved away
from the classical RS-232 serial port two decades ago, FPGA development boards
usually provide a USB-over-serial interface. This means plugging in the FPGA dev
board via USB creates a virtual serial port on the PC side, which can then be used
by data transfer programs or interactive serial terminal applications. To put this in
concrete terms, the net result of all this is that we will be able to type in a terminal
program on our PC and get meaningful replies from our circuit running on the
FPGA, printed in the same window.

10.2 Universal Asynchronous Serial Communication 157

We are going to do this by implementing a device called a universal asynchronous
receiver-transmitter (UART) which takes care of interfacing between parallel data of
some set width and the one-bit serial stream. By using two pins of the FPGA, one for
transmission and one for reception, we can implement two-directional full-duplex
communication.

10.2.1 Serial data format

Before we can describe the format of the serial data used in UART communication,
we first need to enumerate the free parameters that we’ll need to refer to in the
description. The parameters describing the UART’s behavior are:

• The data rate (in bits per second). In practice, there are some standard rates
(e.g. powers-of-2 multiples of 300 or 600 bps) due to historical reasons. Below
where we refer to “one bit’s length” it is meant according to this rate.

• The order of the data bits, i.e. least- or most-significant bit first.

• The number of data bits 𝑑, between 5 and 9.

• The scheme used for the parity bit, if any.

• The number of stop bits 𝑠 (at least one).

Of course, both communicating parties need to be configured for the same
parameters for successful data transfer.

With these parameters set, the serial format for transmitting the data bits
𝑥1 , 𝑥2 , . . . , 𝑥𝑑 is as follows:

1. At idle, the line is kept at the high level.

2. When transmission starts, first a start bit must be sent. This is done by setting
the line to low, and keeping it such for one full bit length.

3. Then, the 𝑑 data bits are sent, by keeping the line low or high for one bit length
for each bit.

4. If parity checking is used, the parity bit is sent next. Depending on the parity
scheme used, the parity bit ensures that the total number of high data and
parity bits is even or odd. This is not enough for error correction, but at least
makes one-bit error detection possible: for example, if the 8 data bits and the
odd parity bit received are 0b111010101, we know there was an error (caused
by e.g. line noise) since an even number of bits are high.

5. The 𝑠 stop bits are sent at high value.

Chapter 10 Asynchronous Serial Communication158

The following figure illustrates the 𝑑 = 7, 𝑝 = 1, 𝑠 = 1 configuration:

Start 𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 Parity Stop

For simplicity’s sake, we will hardcode some of the UART parameters: in partic-
ular, we will transmit the least significant bit first, have no parity bits, and use one
stop bit. These choices will put us in good company, since these are the defaults
used by most PC applications. It also matches what we will need in chapter 18
to implement the virtual floppy drive. Fully universal generalization of the UART
implementation could still be useful for other applications, of course, but we leave
it as an exercise for the reader.

10.3 Serial Transmitter

Human communication shows us that shouting into the void is easier than listening.
In this theme, we will start with implementing the transmitter half of a receiver-
transmitter.

For a first version, let’s write a serial transmitter that transmits at its driving
clock’s rate. At any given cycle, the transmitted bit is determined by where we are
in the process (e.g. it is low for the start bit) and also, of course, by the bit-vector we
are transmitting. So the transmitter’s internal state will need to know which part
of the protocol we are transmitting; and once transmission starts, will need to store
the bits to be shifted out:

data TxState
= TxIdle
| StartBit (BitVector n)
| DataBit (BitVector n) (Index n)
| StopBit
deriving (Show, Eq, Generic, NFDataX)

We can approach this with a Moore machine mindset, since we know exactly
what the output bit should be in each state:

10.3 Serial Transmitter 159

output :: TxState -> Bit
output TxIdle = high
output (StartBit _) = low
output (DataBit xs i) = xs ! i
output StopBit = high

This will do the right thing (i.e. least-significant bit first) for DataBit if i is
decreasing, since xs ! (n-1) is the least significant bit of xs, x ! (n-2) is the
second-least significant bit, and so on. So in our step function, we just need to keep
decreasing i until it gets to the end. Also, we only need to look at the input in the
TxIdle state: once we get running, the TxState stores the data. This makes for a
much easier-to-use interface than requiring client code to keep the input constant
for the whole duration of the transmission.

nextState
:: (KnownNat n) => TxState n -> Maybe (BitVector n) -> TxState n

nextState TxIdle input = maybe TxIdle StartBit input
nextState (StartBit xs) _ = DataBit xs maxBound
nextState (DataBit xs i) _ = maybe StopBit (DataBit xs) $ predIdx i
nextState StopBit _ = TxIdle

This would work, but the vector indexing in the DataBit xs i branch of output
can be rewritten to be much lighter on FPGA parts usage. If we keep shifting xs to
the right at every nextStep, then its least significant bit will go through all bits of
the input as we process the n states of DataBit, and now we don’t need indexing.
Also, we can get rid of the ugly counting-down in the index, and keep counting up,
since its value doesn’t matter anymore, just that we stay in StartBit for n bits.

𝑑𝑛 . . . 𝑑2 𝑑1 𝑑0Bits stored in state: Least significant bit: 𝑑0

Shift to the right

0 𝑑𝑛 . . . 𝑑2 𝑑1Bits stored in state: Least significant bit: 𝑑1

. . . Shift to the right 𝑛 − 1 times total

0 0 . . . 0 𝑑𝑛Bits stored in state: Least significant bit: 𝑑𝑛

Chapter 10 Asynchronous Serial Communication160

The changes required to output and nextState are tiny. bvShiftR shifts to the
right by adding the given bit to the left, and returns the just-shifted-out bit along
with the new bits.

bvShiftR :: (KnownNat n) => Bit -> BitVector n -> (BitVector n, Bit)
bvShiftR x xs = bitCoerce (x, xs)

output (DataBit xs i) = lsb xs

nextState (StartBit xs) _ = DataBit x 0
nextState (DataBit xs i) _ =

let (xs', _) = bvShiftR 0 xs
in maybe StopBit (DataBit xs') $ succIdx i

If we put nextState and output together using the moore combinator, we get the
following serial transmitter (a UAT, maybe?):

minimalTx
:: (KnownNat n, HiddenClockResetEnable dom)
=> Signal dom (Maybe (BitVector n)) -> Signal dom Bit

minimalTx = moore nextState output TxIdle

But this is simplified to uselessness, so we have to address at least its two main
shortcomings first, before building anything around it: we need to slow it down to
the transmission rates that are actually going to be supported by anything on the
other side, and we need a way to signal the consumption of incoming data.

10.3.1 Taking it slow

One approach to slowing down any Moore machine could be to simply hook up an
extra Bool signal, and only update the state whenever its value is True:

mooreSlow
:: (HiddenClockResetEnable dom, NFDataX s)
=> (s -> i -> s)
-> (s -> o)
-> s
-> Signal dom Bool
-> Signal dom i
-> Signal dom o

mooreSlow step output tick input =
moore step' output $ bundle (tick, input)

where
step' s (tick, input) = if tick then step s input else s

10.3 Serial Transmitter 161

But this is not quite flexible enough for a UART, since we want to leave the TxIdle
state as soon as an input is available, and start the clock only then. So instead, we
need to keep a separate counter for all the slow states, which we can start at the
TxIdle to StartBit transition; and then at every tick, we maintain this counter to
see if we should really go to the next state.

We can make the number of cycles to maintain each output bit fully freely
configurable by making it an extra input (alongside the BitVector n to shift out).
For most applications, we will set it to a fixed number (calculated from the clock rate
and a given target rate), but for others, it makes sense to leave it configurable. For
example, if we’re building a generic serial terminal (with a screen and a keyboard
hooked up as peripherals), we would want to enable the user to change the serial
communication settings to whatever is used by the computer on the other end.

data TxState n
= TxIdle
| TxBit Word32 (TxBit n)
deriving (Show, Eq, Generic, NFDataX)

data TxBit n
= StartBit (BitVector n)
| DataBit (BitVector n) (Index n)
| StopBit
deriving (Show, Eq, Generic, NFDataX)

nextState
:: (KnownNat n)
=> TxState n -> Word32 -> Maybe (BitVector n) -> TxState n

nextState TxIdle _ input = maybe TxIdle (TxBit 1 . StartBit) input
nextState (TxBit cnt s) dur _
| cnt < dur = TxBit (cnt + 1) s
| otherwise = case s of

StartBit xs -> TxBit 1 $ DataBit xs 0
DataBit xs i -> TxBit 1 $

let (xs', _) = bvShiftR 0 xs
in maybe StopBit (DataBit xs') $ succIdx i

StopBit -> TxIdle

(output doesn’t need changing from the previous version, modulo pattern matching
on TxBit _ s instead of s for slow states.)

Then, implementing the slowed-down equivalent of minimalTx is a simple matter
of shuffling around parameters by judicious use of bundling and currying:

Chapter 10 Asynchronous Serial Communication162

slowTx
:: (KnownNat n, HiddenClockResetEnable dom)
=> Signal dom (Maybe (BitVector n)) -> Signal dom Bit

slowTx = curry $ moore (uncurry . nextState) output TxIdle . bundle

10.3.2 Upstream control

To see why we need to do some kind of upstream control, imagine a very simple
circuit that keeps sending a predetermined message, byte by byte. If the full message
is just one byte x, this is easy to do even with minimalTx: we can put Just x as the
input, which will be repeatedly picked up in the TXState of TxIdle. But if we want
to send out a sequence made up of x followed by y, we need to change the input
from Just x to Just y at the right time (i.e. any time between minimalTx entering
StartBit and leaving StopBit). However, our minimalTx function doesn’t expose
this information. So let’s change that!

The basic idea is to change the transmitter’s interface so that it has two outputs:
the Bit representing the serial line’s value, to be connected to the outside world;
and also a Bool signaling that the transmitter is ready to send the next message.

slowTx
:: (KnownNat n, HiddenClockResetEnable dom)
=> Signal dom Word32
-> Signal dom (Maybe (BitVector n))
-> (Signal dom Bit, Signal dom Bool)

slowTx = curry $ moore (uncurry . nextState) output' TxIdle . bundle
where
output' s = (output s, s == TxIdle)

10.3.3 Modeling state as State

One problem with splitting a stateful circuit’s description into nextState and output
is that it makes it very awkward, if not impossible, to compute the circuit’s output
based on the state transition. For example, suppose we want to have another Bool
output from slowTx that signals the consumption of its input, i.e. a transition from
TxIdle to StartBit 0.

The relevance of this problem is that if we compute the output together with the
new state, the type of the state transition becomes the following:

step :: i -> s -> (s, o)

10.3 Serial Transmitter 163

Recall the definition of the State monad:

newtype State s a = State{ runState :: s -> (a, s) }

That’s right: the type of step is isomorphic to a function from i to State s o! In
other words, we can provide a State monad based interface to stateful circuits.

This shouldn’t come as a big surprise, since we are describing a stateful compu-
tation, so State should be the obvious representation, right? However, in chapter 4,
when we introduced the whole RTL model, we said that State isn’t enough to accu-
rately model a circuit with registers, because it would correspond to a non-clocked
circuit, with all the problems that entails.

The resolution to this seeming contradiction is that here, we are using State
to model the intra-cycle behavior of our RTL circuit. Under the hood, we will
use Clash’s mealy combinator, which is to Mealy machines what moore is to Moore
machines: lifting a stateful computation into a Signal transformer. The difference
is exactly what we want: in a Mealy machine, the output is computed as a state
transition occurs, i.e. from the previous state and the input, together with the new
state:

state step out

in

mealy
:: (HiddenClockResetEnable dom, NFDataX s)
=> (s -> i -> (s, o))
-> s
-> Signal dom i
-> Signal dom o

mealy internally creates a synchronous RTL circuit with a register-guarded
recursion to propagate the state from one clock cycle to the next, just like any other
RTL circuits we’ve built so far. But the behavior of the circuit during a single cycle
can be modeled by State, by taking its entirety and connecting it between the output
and the input of the state register. This means no outside Signal can interact with
intermediate steps of the State circuit, and thus synchronicity is maintained.

This explanation can be captured in code by simply writing the following com-
binator. It doesn’t do anything deep, just gets rid of the State newtype wrapper
and shuffles some pairs because the step argument to mealy has the input and the
old state, and the output and the new state, in reverse order compared to runState:

Chapter 10 Asynchronous Serial Communication164

mealyState
:: (HiddenClockResetEnable dom, NFDataX s)
=> (i -> State s o) -> s -> (Signal dom i -> Signal dom o)

mealyState f = mealy step
where
step s x = let (y, s') = runState (f x) s in (s', y)

Or, for cases where we want to use bundling to support multiple inputs
and outputs (i.e. if we want something like (Signal dom a, Signal dom b) ->
(Signal dom c, Signal dom d)):

mealyStateB
:: (HiddenClockResetEnable dom, NFDataX s, Bundle i, Bundle o)
=> (i -> State s o)
-> s
-> Unbundled dom i
-> Unbundled dom o

mealyStateB f s0 = unbundle . mealyState f s0 . bundle

This finally allows us to write a nicely readable version of our serial transmitter
in Mealy style, using the familiar State monad. We have a stateful computation of
the next Bit to be emitted; and we put it in a wrapper to run it slowly, by overriding
the state change (but keeping the output result) while counting down from one bit’s
duration. Also, we can use a WriterT internally to signal readiness in the TxIdle
state.

txStep :: forall n. (KnownNat n)
=> Word32 -> Maybe (BitVector n) -> State (TxState n) (Bit, Bool)

txStep dur input = fmap (fmap getAny) . runWriterT $ get >>= \case
TxIdle -> do

tell $ Any True
traverse_ (goto . StartBit) input
return high

TxBit cnt tx -> slowly cnt tx $ case tx of
StartBit xs -> do

goto $ DataBit xs 0
return low

DataBit xs i -> do
let (xs', _) = bvShiftR 0 xs
goto $ maybe StopBit (DataBit xs') $ succIdx i
return $ lsb xs

StopBit -> do
put TxIdle
return high

10.4 Serial Receiver 165

where
goto = put . TxBit dur

slowly cnt tx body
| cnt > 1 = body <* put (TxBit (cnt - 1) tx)
| otherwise = body

For easier usability, we expose two versions of the serial transmitter: one for
dynamic bit durations, and one where the statically known bitrate is converted to
the necessary duration based on the main clock rate.

serialTxDyn
:: (KnownNat n, HiddenClockResetEnable dom)
=> Signal dom Word32
-> Signal dom (Maybe (BitVector n))
-> (Signal dom Bit, Signal dom Bool)

serialTxDyn dur input = mealyStateB (uncurry txStep) TxIdle (dur, input)

serialTx
:: forall n rate dom. (HiddenClockResetEnable dom,

KnownNat n, KnownNat (ClockDivider dom (HzToPeriod rate)))
=> SNat rate
-> Signal dom (Maybe (BitVector n))
-> (Signal dom Bit, Signal dom Bool)

serialTx rate = serialTxDyn $ pure dur
where
dur = fromIntegral . natVal $

SNat @(ClockDivider dom (HzToPeriod rate))

10.4 Serial Receiver

With all the machinery we’ve built up for the transmitter, implementing the receiver
part is going to be a much more direct affair. The transmitter kept the serial line at
the right signal level for the whole bit duration, but the receiver has to decide when
to sample it. In our implementation, we are going to keep it simple and do a single-
cycle sampling at the exact middle of the period. We’re going to do this by basically
splitting each RxBit state into two: before the sampling, and after. This way, by
using a counter equal to half a bit duration, we can transition from non-sampled to
sampled, and then to the next bit if we do have a sampled bit for this state.

To compute half of bit dur, we have to be a bit careful. First of all, we want to
use a bit-shift to do the actual division, to get a very simple circuit:

Chapter 10 Asynchronous Serial Communication166

half :: (Bits a) => a -> a
half x = x `shiftR` 1

Second, we have to make sure that the two halves together add up to a complete
duration. To this end, instead of using half dur for both halves of the waiting, we
will use half dur and dur - half dur:

data RxState n
= RxIdle
| RxBit Word32 (Maybe Bit) (RxBit n)
deriving (Generic, Eq, Show, NFDataX)

data RxBit n
= StartBit
| DataBit (BitVector n) (Index n)
| StopBit (BitVector n)
deriving (Generic, Eq, Show, NFDataX)

rxStep
:: (KnownNat n)
=> Word32 -> Bit -> State (RxState n) (Maybe (BitVector n))

rxStep dur input = fmap getLast . execWriterT $ get >>= \case
RxIdle -> do

when (input == low) $ waitFor StartBit
RxBit cnt sample b | cnt > 1 -> do

put $ RxBit (cnt - 1) sample b
RxBit _ Nothing b -> do

consume input b
RxBit _ (Just sample) rx -> case rx of

StartBit -> do
if sample == low then waitFor (DataBit 0 0) else put RxIdle

DataBit xs i -> do
let (xs', _) = bvShiftR sample xs
waitFor $ maybe (StopBit xs') (DataBit xs') $ succIdx i

StopBit xs -> do
when (sample == high) $ tell $ pure xs
put RxIdle

where
dur1 = half dur
dur2 = dur - dur1

waitFor = put . RxBit dur1 Nothing
consume input = put . RxBit dur2 (Just input)

10.4 Serial Receiver 167

However, there is a subtle off-by-one error in this implementation. To see why,
imagine a transmitter that is sending as fast as it can, leaving no gap between the
stop and the start bit. In this case, our implementation would spend one cycle in
RxIdle, then, detecting the low input, would wait dur1 cycles to sample the start bit,
then spend dur2 cycles afterwards waiting for the start bit to end; this gives a total
of 1 + 𝑏𝑑1 + 𝑏𝑑2 = 1 + 𝑏𝑑 ≠ 𝑏𝑑 cycles. Since the communication is asynchronous,
this drift will only accumulate until the sender is a whole bit ahead of the receiver,
resulting in faulty transmission.

We fix this by simply waiting for dur1 - 1 cycles (instead of dur1) when entering
the first half of the StartBit state:

RxIdle -> do
when (input == low) $
put $ RxBit (dur1 - 1) Nothing StartBit

Now that we have rxStep, we can define serialRxDyn and serialRx exactly as
we did for the transmitter:

serialRxDyn
:: (KnownNat n, HiddenClockResetEnable dom)
=> Signal dom Word32
-> Signal dom Bit
-> Signal dom (Maybe (BitVector n))

serialRxDyn dur input = mealyStateB (uncurry rxStep) RxIdle (dur, input)

serialRx
:: forall n rate dom. (HiddenClockResetEnable dom,

KnownNat n, KnownNat (ClockDivider dom (HzToPeriod rate)))
=> SNat rate
-> Signal dom Bit
-> Signal dom (Maybe (BitVector n))

serialRx rate = serialRxDyn $ pure dur
where
dur = fromIntegral . natVal $
SNat @(ClockDivider dom (HzToPeriod rate))

This finishes our complete UART implementation.

Chapter 10 Asynchronous Serial Communication168

10.5 Applications

10.5.1 Serial Echo

Now that we have a receiver and a transmitter, a natural idea is to connect the two
to form an echo circuit: received bytes are transmitted back as-is. This is a nice way
to ensure everything we’ve written so far works: by uploading this design to our
FPGA dev board, we can run a serial terminal program on the computer we use to
synthesize the circuit, and start typing away. Most serial terminal programs have
the option to show local echo, i.e. to print every character as it is sent. Don’t forget
to turn that off for this circuit: the whole point is that we want to get the echo back
from the remote (FPGA) side, instead of generating it locally.

Whenever we successfully receive an 8-bit value over the serial line from the
UART, we want to queue it for sending. We can do this by putting a buffer between
the two that is set from the receiver and cleared by the “ready to send” signal from
the transmitter. It is a one-element FIFO that silently drops overflowing input (since
we prioritize r’s current value over the new input):

fifo
:: forall a dom. (NFDataX a, HiddenClockResetEnable dom)
=> Signal dom (Maybe a) -> Signal dom Bool -> Signal dom (Maybe a)

fifo input outReady = r
where
r = register Nothing $ mux outReady input (mplus <$> r <*> input)

Our Echo circuit can now be defined simply by putting this fifo between the
de-serialized input and the transmitter:

topEntity
:: "CLK" ::: Clock System
-> "RX" ::: Signal System Bit
-> "TX" ::: Signal System Bit

topEntity = withResetEnableGen board
where
board rx = tx
where

input = serialRx @8 (SNat @9600) rx
buf = fifo input txReady
(tx, txReady) = serialTx @8 (SNat @9600) buf

Note that the UART timings depend on the System clock domain, which Clash
defaults to 100 MHz. If the native clock frequency of the FPGA board used is
not 100 MHz, the clock division inside serialRx and serialTx will give the wrong
results. As discussed in chapter 4, the createDomain Template Haskell function can

10.5 Applications 169

be used to define a clock domain with the correct frequency. For example, if our
FPGA board uses a 16 MHz clock, we can create a 16 MHz domain and use that in
the type of topEntity:

createDomain vSystem{vName="Dom16", vPeriod = hzToPeriod 16_000_000}

topEntity
:: "CLK" ::: Clock Dom16
-> "RX" ::: Signal Dom16 Bit
-> "TX" ::: Signal Dom16 Bit

Because the clock divider calculation in the UART is all type-directed, no term-
level changes are necessary.

10.5.2 Serial Calculator

We can extend our Calculator from chapter 6 to support serial I/O, while still
keeping the existing keypad and seven-segment display support. For input, we can
parse incoming bytes into a Maybe Cmd very straightforwardly, because each byte
arriving through the serial port will correspond directly to zero or one commands.
We could use 8-bit numeric values for the various commands, but the code can be
made much more readable if instead we do a detour to the Char type.

pattern ByteChar c <- (chr . fromIntegral -> c) where
ByteChar = fromIntegral . ord

byteToCmd :: Unsigned 8 -> Maybe Cmd
byteToCmd b@(ByteChar c) | '0' <= c && c <= '9' = Just . Digit $

fromIntegral $ b - ByteChar '0'
byteToCmd (ByteChar '+') = Just $ Op Add
byteToCmd (ByteChar '-') = Just $ Op Subtract
byteToCmd (ByteChar '=') = Just Equals
byteToCmd (ByteChar '\r') = Just Equals
byteToCmd (ByteChar '\DEL') = Just Clear
byteToCmd (ByteChar '\b') = Just Backspace
byteToCmd _ = Nothing

Serial output is a bit more involved, because the 𝑛 decimal digits have to be sent
over a long time, waiting for the first digit to be shifted out, then putting the second
one on the transmitter, and so on. Also, if we were to only send out the digits, the
output would look something like this (for 𝑛 = 4), if the user types in 123:

0 1 12 123 123 123

Chapter 10 Asynchronous Serial Communication170

To properly replicate the software implementation’s UI, we need to clear the
screen before each update, instead of accumulating the digits shown so far. Luckily,
most serial terminal emulator applications support the escape codes of the ancient
VT-100 terminal, which means certain sequences of bytes starting with 0x1b are
interpreted as commands instead of displayed to the user as-is. Two of these
commands are [2J to clear the screen and [H to move the cursor to the home
position (i.e. to the upper-left corner). If we prepend these two commands (7 bytes
in total) to each update, we will get a nicely updated single-line output.

In serialDisplay, we transform the 𝑛 decimal digits in our input into a vector
of 7+ 𝑛 bytes, and keep a Maybe (Index (7 + n)) that tells us which byte is getting
sent right now. Whenever the UART acknowledges a byte, we move on to the next
one.

serialDisplay
:: forall n dom. (KnownNat n, HiddenClockResetEnable dom)
=> Signal dom Bool
-> Signal dom (Vec n (Maybe Digit))
-> Signal dom (Maybe (Unsigned 8))

serialDisplay ack digits =
mealyStateB step (Nothing @(Index (7 + n)), repeat 0) (ack, digits)

where
step (next, digits) = do

(i, bs) <- get
case i of

Nothing -> do
put (Just 0, clear ++ map fromDigit digits)
return Nothing

Just i -> do
when next $ put (succIdx i, rotateLeftS bs (SNat @1))
return . Just $ head bs

fromDigit :: Maybe Digit -> Unsigned 8
fromDigit = maybe (ByteChar ' ') $ \n ->

ByteChar '0' + fromIntegral n

clear :: Vec 7 (Unsigned 8)
clear =

-- clear screen
0x1b :> ByteChar '[' :> ByteChar '2' :> ByteChar 'J' :>
-- cursor to home position
0x1b :> ByteChar '[' :> ByteChar 'H' :>
Nil

If we try this out, depending on the terminal emulator, we might see, at idle,

10.5 Applications 171

horrible flicker on the serial output. This is because as soon as the last byte (the 𝑛’th
digit) is sent out, the clear screen command is immediately sent out next, followed
by a re-send of the visible digits. One way to avoid this flicker is to only start shifting
out (i.e. to only go from the index being Nothing to Just 0) if the displayed digits
have actually changed. Since we continuously rotate the buffer of bytes bs, after 𝑛
rotations it will be back to its original value, ready to be compared to the new one:

case i of
Nothing -> do

let bs' = clear ++ map fromDigit digits
when (bs /= bs') $ put (Just 0, bs')
return Nothing

In the top-level board definition, we can combine the keypad-originating
Maybe Cmd with the serial-originating one. Which one gets prioritized doesn’t really
matter, since in any realistic use case, one calculator is not going to be hammered
both from the keypad and also over serial at the same time fast enough that there
is even any chance for a same-cycle conflict. For the serial output, it is even simpler:
we just fan out the digits to be displayed to serialDisplay, and connect that to a
serial transmitter.

board rx rows = (tx, display, cols)
where

display = driveSS (\x -> (encodeHexSS . bitCoerce $ x, False))
digits

input = inputKeypad keymap
digits = logic cmd

(cols, key) = input rows
cmdKey = (keyToCmd =<<) <$> key

-- New part starts here
(tx, ack) = serialTx (SNat @9600) $

fmap pack <$> serialDisplay ack digits
cmdSerial = (byteToCmd . unpack =<<) <$>

serialRx (SNat @9600) rx
cmd = mplus <$> cmdKey <*> cmdSerial

Exercises:

• Starting from the Echo example, write a ROT-13 circuit that accepts ASCII
characters over serial, and sends back only the printable ones (0x20 to 0x7e,
inclusive), but with letters of the alphabet rotated by 13 places. In other words,

Chapter 10 Asynchronous Serial Communication172

'A' gets replaced by 'N' and vice versa, 'B' with 'O', and so on. Note that
this mapping is self-inverse, so typing in the output again should give back
the original input.

• In the Calculator example, serialDisplay uses 7 extra 8-bit bytes worth of
registers to store the screen-clearing escape sequence while it is getting shifted
out, even though this sequence is constant. Get rid of these 56 registers by
changing the internal state of the Mealy machine.

• In the Calculator example, instead of comparing the newly displayed number
to the old one, arrange for an extra signal (originating from the logic board)
that tells serialDisplay when to start sending out a new sequence of bytes.
For example, logic could return the displayed digits wrapped in a Maybe, and
only set it to Just when they change.

• Apply the same technique to Pong, allowing paddle control over a serial
receiver.

10.6 Summary

• In asynchronous serial communication, there is no shared clock between the
two parties, so both sides do their own timekeeping. In the UART format, the
start bit signals to the receiver to start its timer, synchronizing the clocks at
the start of each byte.

• When the serial receiver has received enough bits to make up a full byte, its
Maybe (BitVector n) output becomes a Just value. We need a similar mecha-
nism of signaling the consumption of the next byte to send in the transmitter;
otherwise, the source has no way of pacing itself. This pattern of upstream
control will come up again in later designs.

• Stateful circuits can be modeled as a Mealy machine: a state register coupled
with a combinational circuit that computes the next state and the output
signal from the old state and the input. This allows turning any State s a
computation into a circuit.

• With how we structured our calculator, we can easily add serial communica-
tion as a new UI modality.

11Programmable Machines

Ever since Church and Turing showed that the lambda calculus and Turing ma-
chines are equivalent in the class of computation they can express, a huge number
of Turing-complete models of computation has been discovered and invented. From
Post’s correspondence problem to the collectible card game Magic the Gathering to
Diophantine equations, there is no shortage of systems that can be used to imple-
ment computation including universality, i.e. the ability to input the program to run
as part of the input. However, unless one is specifically researching computability,
there are three specific models of computation that are widely used:

• Turing machines are the gold standard when it comes to concrete calcula-
tions involving program size and execution time. If we want to do meta-
computational calculations like the Busy Beaver function or upper bounds on
Kolmogorov complexity and get actual numbers, Turing machines are the way
to go.

• Functional programming as a whole is based on the lambda calculus. A lot
of programming language theory is interested in various restrictions of the
lambda calculus to avoid divergent programs while still allowing expressing
a large class of the convergent ones; and a lot of compiler research has gone
into efficiently implementing functional languages.

• And then there are RAM machines, which are basically modeling how real
digital electronic computers work, modulo some mathematical abstractions.

Based on this characterization, it shouldn’t come as a surprise that the com-
puters we’ll be implementing in this book, whether independent designs or re-
implementations of historical computers, are going to be based on the RAM machine
model.

11.1 RAM machines

Instead of giving a fully formal definition that nails down all the details of some par-
ticular variant of RAM machines, here we are going to give an informal description

173

Chapter 11 Programmable Machines174

of the computational model we’ll be using. Committing to details wouldn’t serve
us too well because we are not going to implement the RAM machine in hardware;
instead, in later chapters we are going to implement various practical designs based
on this model.

11.1.1 Definition

In its simplest form, a RAM machine consists of a collection of uniform registers
called the memory, a list of instructions called the program, and a program counter
indexing into the program.

• The memory is a numbered list of registers 𝑚 = ⟨𝑚1 , . . .⟩. In theoretical mod-
els aiming at Turing-completeness, usually a finite number of cells are used,
with each one holding a natural number; but the opposite approach (an infinite
number of finitely-sized registers) can also work. Machines that are designed
to be implemented in the physical world (using e.g. digital electronics) have
to use a finite register size and a finite number of registers.

• The program is a finite, numbered list of instructions 𝑝 = ⟨𝑝1 , . . . , 𝑝𝑘⟩. The
details of the instruction set is the biggest source of variability between var-
ious models all usually called RAM machines. The basic idea behind RAM
machines, and what separates them from so-called register machines, is that
there are instructions that operate via pointer indirection: for example, instead
of only having instructions that say 𝑚𝑖 ← 𝑚𝑖 + 1: “increment by one the value
of 𝑚𝑖”, we can also have [𝑚𝑖] ← [𝑚𝑖] + 1: “increment by one the value of the
cell whose number is in 𝑚𝑖”.

• The program counter is an index into the program, i.e. either a value between
1 and 𝑘, or some other value in which case there is no way to keep running the
machine: it is in a halted state. The program counter is incremented by one in
each step of execution for most instructions; but to be Turing-complete, there
needs to be at least one instruction that changes the program counter condi-
tionally. For example, we can have a direct branch if 𝑚𝑖 = 0 then goto 𝑙 or
an indirect one if [𝑚𝑖] = 0 then goto 𝑙.

Some RAM machine models, in an effort to more closely model real-life hard-
ware, have a separate accumulator register 𝑎, and require arithmetic calculations and
pointer dereferencing to go through that. In this model, there are no operations
of the form 𝑚𝑖 ← 𝑓 (𝑚 𝑗); instead, there is a pair of load/store instructions 𝑎 ← 𝑚𝑖

and 𝑚𝑖 ← 𝑎 (and 𝑎 ← [𝑚𝑖] and [𝑚𝑖] ← 𝑎 if indirect addressing is supported), and
everything else is of the form 𝑎 ← 𝑓 (𝑎).

11.2 Memory 175

This is not a restriction on what computations these machines can express; in
fact, there is no fundamental extra power from pointer indirection at all. Just the
following three, direct-addressed instructions are already enough for universality:

• 𝑚𝑖 ← 𝑚𝑖 + 1
• 𝑚𝑖 ← 𝑚𝑖1
• if 𝑚𝑖 = 0 then goto 𝑙

However, indirect operations can greatly increase efficiency, since a single in-
direct function application — when simulated using direct operations — would
require 𝑂(𝑛) instructions, and would run in 𝑂(𝑛) steps. In practical terms, this
speedup comes “for free”, since real-world memory elements support the random-
access indexing operation needed to implement indirect access.

11.1.2 Harvard vs. von Neumann architecture

One detail we have completely skipped over in our definition above is where the
program is stored and how it is accessed.

In the simpler case, the program “just is”: it is given as an external list of
instructions, and only the program counter is changing as the machine runs our
program. This setup, where program is stored somewhere outside the main mem-
ory, accessed read-only via the program counter, is called the Harvard architecture.
This approach is commonly used in microcontrollers with internal flash memory
storing the firmware.

In contrast, the von Neumann architecture stores its program in main memory,
so there is no separate program storage and the program counter is just another
memory address. In this setup, instructions need to have an encoding that allows
using memory cells to represent them. One exciting aspect of this approach is that
code becomes data becomes code, opening the door to self-modifying programs.
Generic-purpose processors usually go with this architecture.

11.2 Memory

One central feature of all computational models discussed so far is the memory:
an addressable, mutable container of uniformly typed values. Let’s try writing
some Clash code that implements such a container. First of all, let’s think about
an interface that would make sense. The inputs are going to be the read and write
requests: a read request is simply an address, while a write request (if there is one) is
a pair of target address and new value. The output is the result of the read request.

Summarizing the above, our aim is to implement something with the following
type:

Chapter 11 Programmable Machines176

type R dom addr = Signal dom (Index addr)
type W dom addr dat = Signal dom (Maybe (Index addr, dat))
type RAM dom addr dat = R dom addr -> W dom addr dat -> Signal dom dat

11.2.1 Implementing our own RAM

Perhaps the most straightforward way of implementing memory is to take the
description of “collection of registers” literally: a memory of 𝑛 cells then becomes
𝑛 separate registers, each one initialized to some default value, updating when the
write request targets it, and returning its value when the read address matches its
index. Then the read output of the whole memory is the read result of the single
memory cell that is currently selected.

enable :: (Applicative f) => f Bool -> f a -> f (Maybe a)
enable en x = mux en (Just <$> x) (pure Nothing)

ram
:: (HiddenClockResetEnable dom, KnownNat addr, NFDataX dat)
=> dat
-> RAM dom addr dat

ram initial rd wr = foldl (liftA2 fromMaybe) (pure undefined) cells
where
cell i = enable (rd .== i) r
where

r = regMaybe initial (update <$> wr)

update (Just (addr, val)) | addr == i = Just val
update _ = Nothing

cells = map cell indicesI

Alternatively, we can turn the design above inside-out, and have a register
storing all the cell values in a single, large vector. In this approach, reading becomes
a simple matter of Signal-lifted indexing, and writing is implemented by replacing
the vector with an updated one.1

ram
:: (HiddenClockResetEnable dom, KnownNat addr, NFDataX dat)
=> dat
-> RAM dom addr dat

1Unfortunately, the type of Clash’s replace function is very liberal in what types can be used to pick
the updated element; hence the need for the type signatures on update and step.

11.2 Memory 177

ram initial rd wr = storage .!!. rd
where
storage = register (repeat initial) (update <$> wr <*> storage)

update :: (KnownNat n) => Maybe (Index n, a) -> Vec n a -> Vec n a
update = maybe id (uncurry replace)

11.2.2 The need for Clash memory primitives

If we try using the above two definitions of ram, a multitude of problems arise:

• Performance of simulation in Clash is bad (especially for our first version)
• The synthesis tools running after Clash to produce the final FPGA configura-

tion slow down considerably
• The resulting FPGA configuration is very wasteful of hardware parts

This last part is the real kicker: depending on the specifics of the FPGA targeted,
even a modest RAM of 1000 bytes can be beyond capacity (in practice, the first,
many-register version of ram seems to be performing worse in this regard as well).
The two approaches presented in the previous section simply won’t work for pretty
much anything we would like to build.

The reason for all these shortcomings is that the building blocks that are used to
implement an RTL design are simply much more versatile than what we need here.
A real FPGA hardware has a set amount of circuitry organized in units that each can
support an RTL design of some limited number of register size and combinational
circuit depth. Larger RTL registers can be split “horizontally” across such units, and
deeper combinational circuits can be mapped to multiple units connected serially2.
But just because the combinational circuitry is “simple”, this can’t necessarily be
exploited to use something smaller than whole units.

Instead, we are going to use the built-in memory primitives of Clash that are
then implemented by utilizing specialized memory hardware on the FPGA chip.
These parts have a much simpler and more regular structure than the units usable
as RTL building blocks, since their circuitry is hardwired for the RAM behavior
we tried to model above. The total size of these so-called block RAM parts varies
by FPGA chip, but in general they are always orders of magnitude larger than the
memory one could possibly implement using general-purpose RTL registers on the
same chip. If a 1000 bytes of hand-built RAM would take up all space on a chip,
maybe 100 kilobytes would fit in its block RAM, of course also leaving free all the
logic parts for the rest of the design.

2This increases the propagation delay of the circuit end-to-end, but as we’ve seen earlier, the RTL
model abstracts that away.

Chapter 11 Programmable Machines178

In summary, we are always going to use the Clash memory primitives instead
of hand-written RTL models. There are multiple functions provided, for read-only
vs. mutable memory, for uniformly initialized vs. memory that is initialized to hold
the contents of a given file, and for synchronous vs. asynchronous memory.

11.2.3 Synchronous vs. asynchronous memory

Yes, this is the third time in this book that we make a distinction between syn-
chronous and asynchronous designs of something. It seems for something to be a
valid area of study in digital electronics, it needs to have its own definition of what
to call synchronous versus asynchronous.

In the context of memory design, we call a memory interface asynchronous if
changing the read address prompts an “immediate” change in the read value. Of
course, in a real physical circuit nothing is immediate: what is meant here is that
the change occurs as fast as possible, inside the given clock period. In contrast, a
synchronous RAM design will respond to changes on its address pins at the next
clock cycle: the value output by the RAM is what is stored at whatever address was
put on its input one cycle ago. Working with the synchronous interface is a bit more
tedious than its asynchronous counterpart, but block RAM hardware implements
synchronous memory, so that is what we need to use to access it with its benefits:
large capacity without using up any parts usable for our circuit’s logic.

A further possibility is to use RAM which is much slower than synchronous,
i.e. something where there can be quite a large number of cycles of delay between
a read request and its result being available. This style of memory is what is used
in all modern computers: CPUs have become significantly faster than memory,
necessitating multiple levels of caching to get good performance from the complete
system. This adds substantial complication to CPU design, and we are not going
to address it in this book. Here, we are interested in the decade of classic home
computers from the late ’70s to the early ’80s, when RAM and CPU ran in lockstep.

11.2.4 Clash's memory primitives

Based on what we discussed so far, and planning for implementing computers
that originally had separate ROM and uninitialized RAM chips, we will use the
following functions from the Clash Prelude:

blockRam1
:: (HiddenClockResetEnable dom, NFDataX a, Enum addr, 1 <= n)
=> ResetStrategy r -> SNat n -> a
-> Signal dom addr -> Signal dom (Maybe (addr, a)) -> Signal dom a

11.2 Memory 179

romFile
:: (HiddenClockResetEnable dom, KnownNat n, KnownNat m)
=> SNat n -> FilePath
-> Signal dom (Unsigned n) -> Signal dom (BitVector m)

Clash offers more flexibility than what we will need: blockRam1 is very liberal in
the type used for addressing, accepting any Enumerable type; on the other hand, the
file-initialized memory primitives insist on exposing their result as a raw BitVector,
to avoid baking in any convention about how to interpret the initializer file’s contents.
This initializer file is in a very simple text format, where each line contains𝑚 number
of bits, each written as the character 0 or 1.

Just to show that we haven’t lost anything when moving to using these memory
primitives, we can massage blockRam1 into exactly the same format as our hand-
written RAM implementations using mostly just unification, and not initializing the
cell values at all:

ram
:: forall addr dat dom.

(HiddenClockResetEnable dom
, KnownNat addr, 1 <= addr, NFDataX dat)

=> RAM dom addr dat
ram = blockRam1 NoClearOnReset (SNat @addr) undefined

11.2.5 Memory maps and address decoding

Let’s suppose we are building a computer based on the von Neumann architecture:
program is stored in main memory, accessed just like any other cells. We can’t use
ROM as the main memory, because then the CPU is unable to change anything; we
might as well not even turn on the machine, since nothing is going to change by
letting it run. On the other hand, if we use RAM as the main memory, how do we
get the program we want to run onto the CPU? When we turn the computer on, the
CPU will start fetching its first instruction from some initial address, but since that
address is now pointing to uninitialized RAM, it will start executing garbage.

To get around this, it is quite common on von Neumann architectures to have
ROM around the address where the CPU fetches its initial instruction, to provide
enough code to bootstrap the computer; and RAM elsewhere. In fact, the von
Neumann computers we are going to be building in this book all have extensive
ROM to contain the code for whole games and operating systems. But this means we
need extra circuitry called an address decoder that routes memory data lines according
to the value of the memory address lines. A so-called memory map describes the
assignment of addresses to RAM or ROM. In a physical device, there might be

Chapter 11 Programmable Machines180

multiple memory chips (for example, implementing 64 kB RAM using four 16 kB
RAM chips), requiring further address decoding.

Going by just the definition of a RAM machine, we get a device that keeps
reading from and writing to memory, but has no effects observable on the outside.
A physical implementation of such a machine would only produce heat. An easy
way around this that doesn’t require any change to the computational model, is to
make memory observable on the outside. Even better, we can avoid the clutter of
memory cells used as temporary storage by saying that we are going to connect only
certain parts of memory to the outside world.

And so we can make a table of outside-observable memory addresses that assigns
an intended meaning to each cell. We can make it even more flexible by not using
memory for certain cells at all; instead, we can connect peripheral devices to those
addresses. Accessing these cells corresponds to sending to or receiving a message
from the given peripheral device. This is called memory-mapped I/O and it is a very
straightforward way of doing input and output without having to modify the CPU,
just by hooking up the peripherals to the address decoder.

Note that the address decoder can easily have access to the CPU’s write-enable
output as well, allowing read and write requests to the same address to be serviced
by different devices, or the same device but with different effect. On some computer
designs, a read memory access on a peripheral triggers some side-effect on that
device.

Some example ideas for memory-mapped I/O, using peripherals we have al-
ready encountered:

• Show status information on LEDs. Simply make a single one-cell-sized register
that is connected to the address decoder’s data lines and some physical pins
that are routed to LEDs.

• Similarly, we can connect an array of two-state switches directly to a single,
read-only cell.

• Keyboards can be scanned by assigning one write-only address to the column
selector and one read-only address to the row input. The program running
on the CPU is responsible for appropriately driving the column selector and
interpreting the resulting row.

• A “smarter” keyboard that does its own sweeping and housekeeping and
exposes a read-only memory area that contains the last scanned key states.

The address decoder need not be static. In fact, we can even connect it through
itself to the CPU, so that writing to a specific address changes the address decoder’s
behavior. This can be used to implement memory bank switching: connecting more

11.3 CPU 181

memory to the CPU than its address space permits. For example, if we have a
64 kB address space and want to access 64 kB of RAM, but also need 16 kB ROM
for booting and OS routines, we can use a dynamic address decoder that starts out
with 48 kB RAM and 16 kB ROM mapped, but allows programs to turn off ROM
access temporarily by writing to a special memory location, switching to 64 kB RAM
accessible.

11.3 CPU

In other chapters, we implement specific pieces of hardware, and then combine them
into various devices, either designed from scratch, or aiming to match the behavior
of some existing machine. For CPUs, we have to proceed slightly differently, since
there is no the CPU we can implement with some parameterization: every CPU
design is different. Because of this, we are going to sketch here a possible large-
scale design for CPU circuitry, but the details are going to be filled in when we
create our first concrete CPU in the next chapter.

11.3.1 The basic shape of a CPU

The RAM machine model suggests a design for the CPU that has some internal state
(at the very least, the program counter) and communicates with mutable RAM and
some store of program (which might be the same as the main RAM, depending on
the architecture). To execute one program instruction, the CPU must fetch the next
instruction and interpret it; read from and write to RAM as needed; and update its
program counter. Since we are aiming to use synchronous memory in lockstep with
the CPU, most instructions will require execution spanning multiple clock periods:

1. The next instruction’s address has to be placed on the program store’s address
input.

2. The program store’s output now has the next instruction. This needs to be
decoded by the CPU to figure out what to do next. Depending on the design,
some or all instructions might be wider than the unit of storage in the program
store. In this case, it can take several clock periods just to find out what the
next instruction is.

3. Some instructions only change the internal state. For example, in an accumu-
lator design, the instruction 𝑎 ← 𝑓 (𝑎) only changes an internal register. These
instructions can be done in the same cycle as fetching / decoding. However,
instructions that read from RAM will need more cycles. For example, 𝑎 ← 𝑚𝑖

requires putting 𝑖 on the address input of RAM, and waiting for the next
period to get the result.

Chapter 11 Programmable Machines182

4. Generic indirect addressing adds yet more latency. For example, to implement
𝑎 ← [𝑚𝑖], we first request 𝑖 from RAM as in step 3, but then the result 𝑚𝑖 ,
once available, is fed back as the next address to become available in the
subsequent period. This can be avoided if the instruction set only allows for
indirect addressing in the form of [𝑎], since 𝑎 is a register available to the CPU
for immediate reading.

5. The story is similar for writing to RAM. Depending on the specifics of our
machine, it might be possible to implement direct writes like 𝑚𝑖 ← 𝑎 in the
same cycle as the next instruction fetch (but this can get hairy in von Neumann
machines where a given memory write might affect the next instruction to be
fetched). But for an indirect write like [𝑚𝑖] ← 𝑎, we need an extra period to
first read out 𝑚𝑖 , just like for an indirect read.

6. The program counter is updated to point at the next instruction. Since the
program counter is stored internally, this doesn’t need its own clock cycle;
instead, the program store’s address input can simply be fed from the updated
program counter, thereby equating this last period with the very first period
of the next instruction.

So what do we see in this abstract description of the various clock cycles needed
for a single instruction?

• Writing it out as a sequence of steps is easy on paper, but in a circuit each clock
cycle looks the same, unless we keep track of the various phases of execution.
The implicit state of “where are we in the process of executing an instruction”
needs to become an explicit state stored in an explicit register, updated in each
cycle so that in the next cycle we can dispatch to the correct behavior for that
period.

• Some instructions require multiple reads from the program store. For example,
if we have instructions of the form 𝑎 ← 𝑎 + 𝑘, this might be stored in the
program store as one word containing the tag for this instruction, and the next
one containing the value of 𝑘. As we fetch this second word, we still need
to remember that we are fetching it as an argument to addition; in general,
already-fetched parts of instructions also need to be stored in some internal
register.

• The phase-to-phase transitions are driven by the program itself; for example,
we go from Fetch to ReadMem only if the fetched instruction has some memory
access components (e.g. a direct read). If the instruction is an accumulator
update instead, then we might bump the program counter and go to the next
Fetch directly.

11.3 CPU 183

• There is a lower bound on each instruction’s length, based on its memory
access pattern and its data dependencies. For example, in 𝑎 ← [𝑚𝑖], we need
to wait for 𝑚𝑖 to be read out before we can start accessing [𝑚𝑖].

11.3.2 CPU state

Based on these considerations, we can say that we are going to need to store two
kinds of state in our CPU:

• Proper registers propagate values between the execution of instructions. This
can happen explicitly: for example, if the instruction set has an operation to
“increase the accumulator”, then the accumulator’s initial value is whatever
it was at the end of the previous instruction, and its new value is what is
accessible to the next instruction. Other registers are accessed implicitly: the
program counter is incremented at the end of each (non-branching) instruc-
tion, setting the scene for the next instruction to be retrieved. Since registers
are observable directly by the behavior of various instructions, they are part
of the interface between processor and programmer. Thus, when we are im-
plementing a CPU with the goal of compatibility with a pre-existing machine,
the set of registers are decided for us by the original designers.

• Other state pertains to the phase of execution we find the CPU in. As we have
seen already, we don’t expect instructions to finish in a single clock period,
so we will need to keep track of where we are in that process. This state
is not directly addressable from the program, since programmers work at
the level of abstraction provided by the machine instructions. As such, CPU
implementors have greater freedom in this part of the designing.

It should be noted that in a complete computer system containing a CPU among
other parts, parts of the internal execution phase can still be observed. For example,
by looking at the contents of the address bus in each clock period, we can determine
which phases correspond to memory access.

In this book, the final chapters will implement computers built around the
Intel 8080 processor. However, our implementation will make no reference to
the internal details of the original CPU from 1974. Instead, we will be content
with just instruction-level compatibility. In other words, the registers will behave
according to the original processor’s documentation, but there will be no one-to-
one correspondence in individual clock cycles between our implementation and the
reference chip. In fact, in the first version, instructions will not even have the same
clock period length end-to-end.

For the Space Invaders arcade machine, we can observe that this level of fidelity
is enough simply by booting up the stock firmware, and trying it out. However,

Chapter 11 Programmable Machines184

the Compucolor II uses precisely orchestrated cooperation between the firmware
running on the CPU and the floppy drive to implement data transfer from and to the
floppy disk. This will require us to revisit our original Intel 8080 implementation
and change its microcode slightly, to ensure each instruction takes the same number
of periods.

Going further, the Compucolor II is a user-programmable computer, so just be-
cause we can get to the boot-up prompt, and load some programs from floppies, that
doesn’t tell us if there are programs out there that exploit the cycle-by-cycle details
of instructions to implement some delicate I/O. In particular, the demo scene is noto-
rious for squeezing out the last bit of performance from old computer platforms by
playing all kinds of tricks including, but not limited to, precisely timed I/O strobing
and cycle-counted program design. Programs developed for the Compucolor II
with this approach may not work correctly on our implementation.3

11.3.3 Phases

How the behavior of the CPU is broken down into cycles depends on the concrete
CPU design. In the simplest case, we might be able to execute a full instruction in
one cycle; in general, however, the execution can be decomposed into the following
steps, where each might require separate (and maybe even multiple) cycles:

• Fetch: Arranging for the next instruction to be available to the CPU.

• Decode: Looking at the just-fetched opcode, decide on what needs to be done.
Depending on the architecture, some instructions might be wider than others,
i.e. decoding might result in further fetches.

• Execute: The effects of an instruction can be RAM access (reading and/or
writing), changes to the CPU’s internal state (registers), or I/O via special
CPU pins.

The flow of information between phases is more than just which phase we are
in: for example, we can only execute an instruction if we know what instruction it is:
the result of the decoding phase needs to be passed to the execution phase. Similarly,
if we detect during decoding that we need to fetch more, we need to also persist the
already-fetched instruction data. Depending on the specifics of our design, this can
be done either by persisting the raw memory store contents, or the partial decoding
results.

The execution phase can be broken down into further sub-phases for effects
that require multiple steps. Consider an if 𝑚𝑖 = 0 then goto 𝑙 conditional jump

3This author is not aware of any demo productions for the Compucolor II

11.3 CPU 185

instruction: it requires reading from RAM before (potentially) changing the internal
program counter register. Like with most things CPU, we will discuss the details of
this question in later chapters as we encounter various concrete CPU designs.

11.3.4 Hardwired control vs. microcode

One important split in implementing the details of the execution phase is between
hardwired and microcoded control. In the first case, instructions directly map to
internal CPU state transitions to execute the desired effects. For example, we might
have a datatype for Phase that has enough parameters to capture the behavior of
all possible instructions, and we pick the right one in the decoding phase. This
corresponds to hardwired control because if we look through Clash and the RTL
abstraction, the circuit described this way is a bunch of multiplexers, the output of
each one feeding into registers directly controlling the various execution functions.

In contrast, a microcoded CPU is one where the problem of implementing in-
structions is shifted to instead implementing so-called micro-operations. These
micro-operations are primitive steps that can be done in a single cycle. Each real
instruction is then translated into a sequence of multiple micro-operations. For ex-
ample, if we have an instruction for 𝑚 𝑗 ← 𝑚𝑖 +1, we can translate it to the following
sequence of micro-operations:

1. Put 𝑖 onto the address bus
2. Read from the data in bus into the internal (micro-)accumulator
3. Increment the accumulator’s value
4. Put 𝑗 onto the address bus and the accumulator’s value on the data out bus
5. Do nothing for one cycle, to allow synchronous RAM to apply the write request

In effect, a microcoded CPU is a shell around a smaller, hardwired CPU with
a simpler instruction set, and a table mapping instructions to multiple micro-
operations.

In this book, we will encounter both design approaches: we will use hardwired
control for the Brainfuck and the CHIP-8 machines, and microcode for the Intel
8080.

11.3.5 Memory access contention

Some hardware designs connect multiple devices to the same memory element. A
common example of this is generating video output based on the contents of specific
parts of the memory. In this case, both the CPU and the video signal generator need
to be able to access the same memory. The question then is, what happens if the
CPU and the video subsystem want to read from different addresses at the same
time?

Chapter 11 Programmable Machines186

We are going to solve this problem by deciding on a priority order: in this
example, since we can’t suspend the video signal generator (it needs to produce the
next pixel’s RGB value as the continuously sweeping electron beam passes over it),
the CPU will have to wait. The granularity of this conflict resolution depends on
the granularity of the memory mapping: if the video memory is implemented as
its own RAM element, mapped to some contiguous region of the CPU’s address
space, then a conflict arises only when, during the video signal generator’s access,
the CPU’s address-out bus contains an address that falls into that given region.

Some designs also allow prioritizing CPU access over the video subsystem, to
allow uninterrupted calculations at the cost of visual glitches. In chapter 18, we
will see that the Compucolor II allows programmers to pick the priority scheme, by
mapping the same video memory to two different address regions: accessing it via
one region prioritizes the video system (good for interactive applications), while
accessing it via the other one never stalls the CPU, benefiting operations heavy on
video memory traffic such as clearing the whole screen.

11.4 Summary

• The RAM machine model of computation captures the essence of digital
electronic computers.

• The program can be stored either in main memory (von Neumann architecture)
or in dedicated read-only memory (Harvard architecture).

• Memory requires dedicated primitives and synchronous access to implement
efficiently on real hardware.

• A single address space can be used to access multiple memory and non-
memory elements in a uniform way.

• The CPU executes instructions by reading/writing memory, accessing inter-
nal registers and using I/O pins. Most operations involve multiple cycles;
this needs internal state to keep track of the various phases of execution.

• Mapping instructions to execution actions can be done via hardwired con-
trol or by wrapping a smaller micro-CPU and translating instructions into
microcode running on that smaller CPU.

12Brainfuck
Beware of the Turing tar-pit in which everything is possible but
nothing of interest is easy.

— Alan Perlis

In this chapter, we build our first Turing-complete computer, consisting of a CPU,
program ROM, work RAM, a multi-digit seven-segment display for output, and a
hex keypad for input. The instruction set of the CPU we will implement is very
close to the formal minimalism of the RAM machine design.

12.1 Why Brainfuck

Brainfuck, invented by Urban Müller in 1992, was originally designed as a so-called
Turing tarpit language: a programming language that is intentionally difficult to pro-
gram in, but is formally Turing-complete, thus frustrating the programmer because
the theory proves any possible program should be expressible. Brainfuck achieves
its difficulty by having only eight, very low-level instructions, and using syntax
that looks like line noise at first glance. Here is a Brainfuck program that outputs
"hello world", hopefully illustrating the reason for the name:

+[-[<<[+[--->]-[<<<]]]>>>-]>-.---.>..>.<<<<-.<+.>>>>>.>.<<.<-.

As amusing as its frustrating qualities are, we are picking Brainfuck for our first
computer for different reasons:

• Its simplistic, low-level design, while difficult for humans to write programs,
makes it easy to run programs once they are written. Although it was originally
designed as a programming language, it is simple enough to map directly to
a hardware implementation. We could say that a lot of the effort has already
been paid by the programmer, so the implementor has less work to do.

• While simple, it’s not too simple. It does not exactly follow the RAM machine
design in one important regard: the [·] construct implements structured

187

Chapter 12 Brainfuck188

programming, suggesting a stack-based implementation that can teach us
techniques we’ll need later for more complicated processor architectures.

• As the first Turing tarpit language that gained popularity, it has amassed
a large library of interesting, dare we say even fun, programs, giving us
something to do with our computer once we finish building it.

12.2 Brainfuck as a programming language

Like this whole book, here we start with the assumption that we’re more comfortable
in the world of software than hardware. For this reason, and also because the
original description of Brainfuck was as a programming language to be compiled
or interpreted on some existing general-purpose computer, we start by looking at it
as a language.

A Brainfuck program is executed in an environment consisting of a one-
dimensional array of cells and a single pointer into said array. The size and number
of cells varies between implementations; the original implementation used 30,000
8-bit cells, so that’s what we’ll use as well. Initially, all cells contain 0 and the
pointer is pointing at cell #0.

The program itself is a finite sequence built from the following constructs:

• Two instructions > and < for incrementing and decrementing the pointer: the
visual mnemonic is to imagine a “head” moving “right” or “left” above the
array of cells. It is unspecified what happens if the pointer would “fall off”
either end of the array.

• Instructions + and - for incrementing and decrementing the pointed cell’s
content.

• I/O instructions . to output the current cell’s value, and , to read input into
the current cell.1

• While-loop [·] that executes the block contents while the current cell’s value
is not zero (checked at the start of each iteration).

We can represent a Brainfuck instruction using the following straightforward
algebraic data type:

1The Brainfuck instruction names are what they are, but in this author’s opinion, ! for output and ?
for input would have made for a nicer pair of mnemonics.

12.2 Brainfuck as a programming language 189

data BF
= IncrPtr | DecrPtr
| Incr | Decr
| Output | Input
| While [BF]
deriving Show

We can nail down the operational semantics of Brainfuck by writing a simple
interpreter in Haskell. The state consists of a pointer into a list of cells, represented
as a zipper ([Cell], [Cell]). I/O is abstracted into a typeclass to allow both
interactive and scripted execution.

import Control.Monad.State.Strict
import Control.Monad.Loops (whileM_, whileJust_)
import Control.Monad.Extra (ifM, unlessM)

type Cell = Word8

class (Monad m) => MonadBFIO m where
doOutput :: Cell -> m ()
doInput :: m Cell

interp :: (MonadBFIO m) => [BF] -> StateT ([Cell], [Cell]) m ()
interp = mapM_ $ \instr -> case instr of

IncrPtr -> modify $ \(ls, x:rs) -> (x:ls, rs)
DecrPtr -> modify $ \(x:ls, rs) -> (ls, x:rs)
Incr -> modifyCell nextIdx
Decr -> modifyCell predIdx
Output -> do

x <- getCell
lift $ doOutput x

Input -> do
x <- lift doInput
setCell x

While prog -> whileM_ ((/= 0) <$> getCell) $ interp prog
where
getCell = gets $ \(_, x:_) -> x
setCell x = modify $ \(ls, _:rs) -> (ls, x:rs)
modifyCell f = modify $ \(ls, x:rs) -> (ls, f x:rs)

Suppose we want to try this interpreter by running it in interactive mode on the
Hello World example program above. We can make IO an instance of MonadBFIO
easily:

Chapter 12 Brainfuck190

import Data.Char (chr, ord)

instance MonadBFIO IO where
doOutput = putChar . chr . fromIntegral
doInput = fromIntegral . ord <$> getChar

However, we can’t just feed the program into interp as-is. That is because
interp takes the program in our structured format, but +[-[<<... is using the
concrete syntax of a stream of characters. This means we need to do a bit of parsing
to go from the 1-dimensional linear sequence of characters to the tree structure of
BF, ignoring any non-Brainfuck characters on the way:

parse :: String -> (String, [BF])
parse [] = ([], [])
parse (c:cs) = case c of

'>' -> one IncrPtr
'<' -> one DecrPtr
'+' -> one Incr
'-' -> one Decr
'.' -> one Output
',' -> one Input
'[' -> case parse cs of

(cs', instrs) -> (While instrs:) <$> parse cs'
']' -> (cs, [])
_ -> parse cs

where
one instr = (instr:) <$> parse cs

With this parsing function, we can finally run our Hello World example, or any
other Brainfuck program specified on the command line, in its full glory, initializing
the state to point at the leftmost end of a 30,000-long list of 0-valued cells2:

hello = "+[-[<<[+[--->]-[<<<]]]>>>-]>-.---.>..>.<<<<-.<+.>>>>>.>.<<.<-."

prepareIO :: IO String
prepareIO = do

hSetBuffering stdout NoBuffering
fileName <- listToMaybe <$> getArgs
maybe (return hello) readFile fileName

2The first line of prepareIO seemingly comes out of nothing. It is needed to turn off output buffering,
since Brainfuck programs assume that every cell is output immediately. Our Hello World program, for
example, doesn’t print a trailing newline, which could cause no output to appear if the output has line
buffering.

12.3 Brainfuck as byte code 191

main :: IO ()
main = do

prog <- snd . parse <$> prepareIO
evalStateT (interp prog) ([], replicate 30000 0)

Exercise:

• What happens if the string passed to parse contains unbalanced [/] pairs?
Change the parser to report a meaningful error message in that case.

12.3 Brainfuck as byte code

To move the above software interpreter closer to a potential hardware implementa-
tion, we need to get rid of the structured intermediate representation of [BF] and
process the concrete syntax directly, by accessing it one character at a time.

So how can we handle [·] blocks, if our view is limited as if looking through
a peephole, showing single [and] characters? Whenever an opening bracket [is
encountered, if the current cell’s value is 0, we need to jump ahead to the matching].
Similarly, when we get to a closing bracket], we need to jump back to its matching
[. Jumping ahead means scanning forward in the program without executing any
instructions, keeping track of nested loops until we see a] that doesn’t belong to
an inner loop. Remembering the past is considerably easier than remembering the
future: we can implement jumping back from] to its [pair by storing, somewhere
on the side, the value of the program counter whenever an [is encountered.

In concrete terms, this means we need to keep some extra state in the interpreter:

• We need to know the address of the next instruction, i.e. the program counter.

• We need to know which phase we are in: are we actually executing the program,
or are we skipping a [·] block by scanning ahead to find the next matching].

• If scanning ahead, we need to know how many levels of nested [·] blocks we
have crossed so far. When skipping a block like [·[·[·]·]·], only the third
] marks the spot when execution needs to resume. We can find this out by
incrementing a counter every time an [is skipped, and decrementing it for
each]. The matching] is the one that would decrement the counter to zero.

• For jumping backwards, we can avoid a leftward scan if we store the program
counter at every [before entering the loop body. Of course, because of nesting,
just storing the last [seen is not enough: we need to store a whole stack of
program counter values, one for each currently open [.

Chapter 12 Brainfuck192

Based on this analysis, the new state components are as follows:

• pc :: Int is the index of the next instruction to execute.
• stack :: [Int] holds the indices of the enclosing [instructions, which we

can consult when an ‘]’ instruction is encountered.
• data Phase is the execution phase, i.e. skipping or executing.
Combining it with our previous representation of the memory cells, we get the

following record:

data Phase
= Exec
| Skip Word8

data BFMachine = MkBFMachine
{ pc :: Int
, stack :: [Int]
, phase :: Phase
, cells :: ([Cell], [Cell])
}

initBFMachine = MkBFMachine
{ pc = 0
, stack = []
, phase = Exec
, cells = ([], replicate 30000 0)
}

The full interpreter fetches the next instruction (addressed by the program
counter) and interprets it, and does this in a loop while the program counter is
valid:

interp :: (MonadBFIO m)
=> (Int -> m (Maybe Char)) -> StateT BFMachine m ()

interp fetch = whileJust_ fetchNext interp1
where
fetchNext = do

pc <- gets pc
modify $ \st -> st{ pc = pc + 1}
lift $ fetch pc

The interpreter for a single step, in the case of a non-[or] instruction, is
very similar to our previous implementation consuming the program in structured
format. The only change for these instructions is to not execute them when skipping
ahead. The considerations for the handling of [and] are:

12.3 Brainfuck as byte code 193

• When skipping an [, it means we are entering a new level of nested [·] blocks,
and thus we need to increment the skipping depth.

• When skipping a], we decrement the skipping depth (potentially ending the
skip-ahead phase).

• When executing an [, depending on the current cell’s value, either we need
to leave a breadcrumb for the matching] by pushing the current program
counter to the stack, or we need to start skipping.

• When executing a], we need to jump back to its matching [. Since all [
instructions push their address to the stack, we can just pop it back into the
program counter.

interp1 :: (MonadBFIO m) => Char -> StateT BFMachine m ()
interp1 instr = gets phase >>= \case

Skip depth -> case instr of
'[' -> goto $ Skip (depth + 1)
']' -> goto $ maybe Exec Skip $ predIdx depth
_ -> return ()

Exec -> case instr of
'>' -> modifyCells $ \(ls, x:rs) -> (x:ls, rs)
'<' -> modifyCells $ \(x:ls, rs) -> (ls, x:rs)
'+' -> modifyCell nextIdx
'-' -> modifyCell predIdx
'.' -> do

x <- getCell
lift $ doOutput x

',' -> do
x <- lift doInput
setCell x

'[' -> do
x <- getCell
if x /= 0 then pushPC else goto $ Skip 0

']' -> popPC
_ -> return ()

where
goto phase = modify $ \st -> st{ phase = phase }

-- Continued below

Now all that remains is to round it off with some utility functions that lift single-
cell and cell-zipper modifiers to BFMachine. Also, the one bit of subtlety for push
and pop is that by the time we run push, we have already incremented the program

Chapter 12 Brainfuck194

counter after fetching the [instruction. Accordingly, we need to adjust when we
pop it back up, so that we go back to [to start the next iteration.

modifyCells f = modify $ \st@MkBFMachine{ cells = cells } ->
st{ cells = f cells }

modifyCell f = modifyCells $ \(ls, x:rs) -> (ls, f x:rs)
setCell = modifyCell . const
getCell = gets $ \MkBFMachine{ cells = (_, x:_) } -> x

pushPC = modify $ \st@MkBFMachine{ pc = pc, stack = stack } ->
st{ stack = pc:stack }

popPC = modify $ \st@MkBFMachine{ stack = top:stack} ->
st{ pc = top - 1, stack = stack }

We can try our Hello World program by fetching from a string via an array for
efficient indexing:

fetchFrom :: (Monad m) => String -> (Int -> m (Maybe Char))
fetchFrom prog = \i -> return $ do

guard $ inRange (bounds arr) i
return $ arr!i

where
arr = listArray (0, length prog - 1) prog

main :: IO ()
main = do

prog <- prepareIO
evalStateT (interp (fetchFrom prog)) initBFMachine

Exercise:

• As written,] will always pop back to its matching [before checking that the
current cell is non-zero. Change the handling of] to avoid this unnecessary
jump.

12.4 Brainfuck with external memory

Next, we are going to focus on the modeling of memory, and using fixed-size types
that can be represented in hardware.

In BFMachine, we included the array of Brainfuck cells in the machine itself:
the list zipper ([Cell], [Cell]) is simply a field of the BFMachine record. In a
real hardware implementation, we would instead use a fixed-size memory array,

12.4 Brainfuck with external memory 195

implemented as block RAM somewhere outside the processor, with the CPU only
storing a pointer to the currently selected cell, as a memory address. We also take
this opportunity to use tighter types than just Int everywhere for addressing. With
these considerations, we can create an interface for external memory as a typeclass
similar to the IO situation before, with the same intention: we want to concentrate
on the internals of our Brainfuck processing unit, without any regard (for now!) to
how memory is actually implemented.3

type PC = Unsigned 12
type MemSize = 30_000
type Ptr = Index MemSize

class (Monad m) => MonadBFMemory m where
readProgROM :: PC -> m Word8
readRAM :: Ptr -> m Cell
writeRAM :: Ptr -> Cell -> m ()

Given the above interface, we can rewrite interp to fetch the next instruction by
requesting the next character from the program ROM, as addressed by the program
counter. We’ll use the zero character '\0' as a marker that we’ve run out of program
to run.

interp :: (MonadBFMemory m, MonadBFIO m) => StateT BFState m ()
interp = whileJust_ fetchNext interp1
where
fetchNext = do

pc <- gets pc
instr <- lift $ ascii <$> readProgROM pc
if instr == '\0' then return Nothing else do

modify $ \st -> st{ pc = pc + 1 }
return $ Just instr

ascii :: Word8 -> Char
ascii = chr . fromIntegral

Pushing on, we also need to get rid of the [PC] representation of our skip-
backwards stack, instead using a fixed-length vector and a stack pointer pointing
to the next element to push to. Although a “real” CPU would store the stack in
main memory instead (by designating an area of RAM to be used for this purpose),
we will make our lives simpler here by restricting the loop nesting length to the
arbitrarily chosen size of 32, and store the tiny stack simply in a CPU register.

3Having two monadic interfaces to two abstract effects is, arguably, at least one too many. A nicer
way of handling this would be to use an algebraic effects library like Polysemy; we skip describing that
approach here because our focus is on the eventual hardware implementation.

Chapter 12 Brainfuck196

data Stack n a = Stack (Vec n a) (Index n)
deriving (Show)

push :: (KnownNat n) => a -> Stack n a -> Stack n a
push x (Stack xs i) = Stack (replace i x xs) (i + 1)

pop :: (KnownNat n) => Stack n a -> (a, Stack n a)
pop (Stack xs i) = (xs !! (i - 1), Stack xs (i - 1))

Now we have everything to describe the internal state of our Brainfuck inter-
preter: it is similar to BFMachine, but instead of the cells themselves, it only contains
a pointer to the current cell, and the stack uses the above fixed-size representation:

type StackSize = 32

data Phase
= Exec
| Skip (Index StackSize)

data BFState = MkBFState
{ pc :: PC
, stack :: Stack StackSize PC
, phase :: Phase
, ptr :: Ptr
}

initBFState = MkBFState
{ pc = 0
, stack = Stack (repeat 0) 0
, phase = Exec
, ptr = 0
}

The only changes needed for interp1 are to manipulate the pointer instead of
the zipper in the > and < cases, and to change the definition of the local helpers used
to access cells the stack:

interp1 :: (MonadBFMemory m, MonadBFIO m) => Char -> StateT BFState m ()
interp1 instr = gets phase >>= \case

Skip depth -> -- Same as before
Exec -> case instr of

'>' -> modifyPtr nextIdx
'<' -> modifyPtr predIdx
-- Other cases: same as before

12.4 Brainfuck with external memory 197

where
goto phase = modify $ \st -> st{ phase = phase }

modifyPtr f = modify $ \st -> st{ ptr = f (ptr st) }

modifyCell f = do
x <- getCell
setCell (f x)

getCell = do
ptr <- gets ptr
lift $ readRAM ptr

setCell x = do
ptr <- gets ptr
lift $ writeRAM ptr x

pushPC = do
pc <- gets pc
modify $ \st -> st{ stack = push (pc - 1) (stack st) }

popPC = modify $ \st ->
let (pc', stack') = pop (stack st)
in st{ pc = pc', stack = stack' }

We round it off by giving an instance of MonadBFMemory allowing us to try it out
from main. We could use Array again for the representation, but since one of the
goals in the current refinement is to give everything precise sizes, we are instead
going to use two vectors for the program ROM and the data RAM. The program
ROM has size 212 so that PC can be used directly to address it, and is passed around
in a ReaderT. The data RAM has MemSize cells, and since its contents can be changed,
it is passed around in a StateT.

type ProgSize = 2 ^ BitSize PC

type WithROM = ReaderT (Vec ProgSize Word8)

runWithROM :: (Monad m) => Vec ProgSize Word8 -> WithROM m a -> m a
runWithROM rom act = runReaderT act rom

type WithRAM = StateT (Vec MemSize Cell)

runWithRAM :: (Monad m) => WithRAM m a -> m a
runWithRAM act = evalStateT act (repeat 0)

We compose WithROM and WithRAM into a newtype so that we can attach a
MonadBFMemory and a (lifting) MonadBFIO instances to it:

Chapter 12 Brainfuck198

newtype BFVec m a = BFVec{ unBFVec :: WithROM (WithRAM m) a }
deriving (Functor, Applicative, Monad)

runBFVec :: (Monad m) => Vec n Word8 -> BFVec m a -> m a
runBFVec prog = runWithRAM . runWithROM prog . unBFVec

instance (Monad m) => MonadBFMemory (BFVec m) where
readProgROM pc = BFVec $ asks (!!pc)
readRAM addr = BFVec $ gets (!!addr)
writeRAM addr x = BFVec $ modify $ replace addr x

instance (MonadBFIO m) => MonadBFIO (BFVec m) where
doOutput = BFVec . lift . doOutput
doInput = BFVec . lift $ doInput

We can load hello, or any other string, into a vector by truncating and padding
as necessary.

loadVec :: (KnownNat n) => [a] -> a -> Vec n a
loadVec xs x0 = unfoldrI uncons xs
where
uncons (x:xs) = (x, xs)
uncons [] = (x0, [])

Since prepareIO returns the program file’s contents as text (in a String), we
need one more piece before we have everything to call runBFVec: a way to turn the
loaded, '\0'-padded vector of Chars into Word8 bytes. We write this generically
over containers because we plan to re-use it later in this chapter for lists instead of
vectors.

stringToROM :: (Functor f) => f Char -> f Word8
stringToROM = fmap (fromIntegral . ord)

main :: IO ()
main = do

prog <- prepareIO
runBFVec (stringToROM $ loadVec hello '\0') $
evalStateT interp initBFState

12.5 A complete Brainfuck computer

Our ultimate aim in this chapter is to build a full Brainfuck computer: something
that consumes raw Brainfuck programs as its machine code, and executes them

12.5 A complete Brainfuck computer 199

while communicating with the outside world according to the IO instructions of
the program. The Harvard architecture is the natural choice for the design, since
Brainfuck has no facilities to access the program via memory operations.

The following block diagram shows the components of our computer. For output,
we will use a two-digit seven-segment display in hexadecimal mode. Of course, we
can’t just flash the number for a clock cycle and expect any human to read it. So
for this reason, we will require a button press acknowledging any output before
continuing with execution. Hence the signal coming from the output module back
to the CPU. Similarly, we connect a signal from the CPU to the input module so we
can notify the user that we’re waiting for their input.

CPU

ROM
romAddr

RAM
ramAddr

Output

Input

SS

BTN

COLS

ROWS

We translate this design to Clash in multiple layers:

• Our topEntity connects directly to the keypad and the seven-segment display:

topEntity
:: "CLK" ::: Clock System
-> "BTN" ::: Signal System (Active High)
-> "ROWS" ::: Signal System (Vec 4 (Active Low))
-> ("SS" ::: Signal System (SevenSegment 4 Low Low Low)

, "COLS" ::: Signal System (Vec 4 (Active Low))
)

• On the next layer, the various peripheral drivers take care of translating
to/from the logical representation of IO. This will allow us to easily replace
parts or all of the IO peripherals, for example to use a serial line. What remains
are the input cell value, the output acknowledgment, the waiting-for-input no-
tification, and the output cell value:

logicBoard
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe Cell)
-> Signal dom Bool
-> (Signal dom Bool, Signal dom (Maybe Cell))

Chapter 12 Brainfuck200

• The logic board consists of the RAM, ROM, and the CPU. From the outside,
the CPU looks like any other circuit, with some inputs and outputs. We will
explore the details of its connections together with its internals.

cpu
:: (HiddenClockResetEnable dom)
=> Signal dom CPUIn
-> Signal dom CPUOut

We will work our way outwards, building the CPU first, then connecting it to the
memory, and finally taking care of peripheral IO.

12.6 Brainfuck as machine code

At first glance, it seems the Brainfuck software implementation that uses external
memory should work as a hardware circuit as well. In other words, we might
expect to be able to write something like cpu = mealyState interp1 initBFState,
re-using the interpreter directly as hardware. However, some differences remain
between our software implementations and real hardware using real memory:

• We used whileJust_ in the software implementations, but a hardware circuit
has no concept of “not running”. Instead, we have to explicitly enter a Halt
state where we don’t do anything in subsequent cycles.

• Instead of doing IO and memory access as monadic actions, we need to produce
output and consume input. For example, instead of an action to read from RAM,
we set some output signals to the address and read the memory value from
some input signals.

• We are aiming to use synchronous memory, which complicates operations
involving memory access. To read from a certain memory address (either
in ROM or RAM), we have to make sure that address was already on the
memory’s address line in the previous cycle. Writing to RAM only affects
reads from the next cycle on.

The first concern’s description already contains its solution: we extend the Phase
datatype with a new constructor for Halt. Let’s look at the solutions for the other
two problems in detail.

12.6.1 Actions as circuit outputs

In software implementations, we were able to affect things outside the interpreter
itself, such as memory units or IO, via monadic actions. For example, in the

12.6 Brainfuck as machine code 201

implementation of the . instruction, to output the current cell’s value, we were able
to write something like the following:

x <- getCell
lift $ doOutput x

which used the underlying MonadBFIO’s implementation of doOutput to write x
to the console, or a record of outputs, or whatever else MonadBFIO chooses to do.

A hardware CPU, however, works differently. Its only connection to other com-
ponents is via its input and output signal lines. Other components, connected to
these lines, will take care of turning those signals into something that affects the
outside world, for example by changing a seven-segment display to show the cell
value as hexadecimal digits. This is evident from the fact that from the outside, a
CPU looks just like any other (stateful) circuit:

cpu
:: (HiddenClockResetEnable dom)
=> Signal dom CPUIn
-> Signal dom CPUOut

Let’s concentrate on just implementing . for now, without any other effects. In
this simplified model, we have no inputs, and a single Maybe Cell output. To have
something interesting to show, the internal state will consist of a Cell value that is
incremented after each output.

data CPUIn = CPUIn{} -- No inputs for now

data CPUOut = CPUOut
{ output :: Maybe Cell
}

data CPUState = CPUState
{ cell :: Cell
}
deriving (Generic, NFDataX)

initState :: CPUState
initState = CPUState

{ cell = 0
}

We have already seen how to write stateful circuits expressed with the State
abstraction. Armed with the mealyState combinator, we can approach this problem

Chapter 12 Brainfuck202

by writing the CPU as a CPUIn -> State CPUState CPUOut function that implements
a single-cycle step:

type CPU = State CPUState

step :: CPUIn -> CPU CPUOut
step CPUIn{..} = do

x <- gets cell
modify $ \s -> s{ cell = x + 1 }
return $ CPUOut{ output = Just x }

cpu = mealyState step initState

This straightforward implementation of step looks reasonable, but let’s see how
well this approach scales with complexity. Let’s add a Bool input for acknowledging
output, e.g. a button the user presses after reading the number shown on the seven-
segment display. Now, whenever we output something, we need to start waiting
for the button to be pressed. We change CPUIn and CPUState accordingly:

data CPUIn = CPUIn
{ outputAck :: Bool
}

data Phase
= Halt
| Exec
| WaitOutput
deriving (Generic, NFDataX)

data CPUState = CPUState
{ phase :: Phase
, cell :: Cell
}
deriving (Generic, NFDataX)

data initState = CPUState
{ phase = Exec
, cell = 0
}

goto :: Phase -> CPU ()
goto phase' = modify $ \s -> s{ phase = phase' }

The step function now becomes more complicated since it needs to handle

12.6 Brainfuck as machine code 203

the two phases differently, and needs to go to the waiting phase after outputting
something:

step CPUIn{..} = gets phase >>= \case
Exec -> do

x <- gets cell
modify $ \s -> s{ cell = x + 1 }
goto WaitOutput
return CPUOut{ output = Just x }

WaitOutput -> do
when outputAck $ goto Exec
return CPUOut{ output = Nothing }

Halt -> do
return CPUOut{ output = Nothing }

There’s quite a lot of detail in this one function. We can factor out the how-to of
producing output:

outputCell :: Cell -> CPU CPUOut
outputCell x = do

goto WaitOutput
return CPUOut{ output = Just x}

Leaving us with:

step CPUIn{..} = gets phase >>= \case
Halt -> do

return CPUOut{ output = Nothing }
WaitOutput -> do

when outputAck $ goto Exec
return CPUOut{ output = Nothing }

Exec -> do
x <- gets cell
modify $ \s -> s{ cell = x + 1 }
outputCell x

But notice that on the WaitOutput and Halt branches, where we don’t want to
concern ourselves with the details of output (since we’re not doing any output), we
still have to construct and return a CPUOut with the right field values. When we
add more fields to CPUOut for functionality completely unrelated to outputting cell
values, the WaitOutput and Halt branches will have to take care of all of those new
fields.

This is not really equivalent to the software implementation, where the
outputCell x action took care of emitting output without burdening non-

Chapter 12 Brainfuck204

outputting code paths with having to explicitly not-output. In more concrete terms,
we want to write step as the following:

step CPUIn{..} = gets phase >>= \case
Exec -> do

x <- gets cell
modify $ \s -> s{ cell = x + 1 }
outputCell x

WaitOutput -> when outputAck $ goto Exec
Halt -> return ()

The key to achieving this is to switch the role of CPUOut from result
to output, by changing the type of step from State CPUState CPUOut to
WriterT CPUOut (State CPUState) (). This requires CPUOut to be equipped
with a monoid instance, which is easy enough to do:

instance Semigroup CPUOut where
(CPUOut o) <> (CPUOut o') = CPUOut (o `mplus` o')

instance Monoid CPUOut where
mempty = CPUOut Nothing

type CPU = WriterT CPUOut (State CPUState)

outputCell :: Cell -> CPU ()
outputCell x = do

tell mempty{ output = Just x }
goto WaitOutput

In fact, by changing CPUOut slightly so that its output field is a monoid itself, we
can simplify these instances to be the obvious lifting ones:

data CPUOut = CPUOut
{ output :: Last Cell
}

instance Semigroup CPUOut where
(CPUOut o) <> (CPUOut o') = CPUOut (o <> o')

instance Monoid CPUOut where
mempty = CPUOut mempty

12.6 Brainfuck as machine code 205

The change required to cpu to run step is minuscule, since execWriterT has just
the right type to turn the WriterT shell’s output into the inner State’s result:

cpu = mealyState (execWriterT . step) initState

The change to CPUOut’s definition does create a bit of a tension between the
interface of cpu and step, since we changed the type of output to better suit the
latter’s implementation instead of the former’s intended semantics. In effect, we’re
leaking an implementation detail in the types. We will revisit this question shortly.

First, however, if we generate field accessor lenses for CPUOut, we can provide a
combinator that assigns a value to any single output field. Let’s use makeLenses the
usual way on CPUOut:

data CPUOut = CPUOut
{ _output :: Last Cell
}

makeLenses ''CPUOut

The Lens library already has a combinator for the pattern of “telling a monoid
value which is mempty with some lens set on it” called scribe. This means we can
rewrite outputCell to:

outputCell :: Cell -> CPU ()
outputCell x = do

scribe output (pure x)
goto WaitOutput

In fact, we will always want to assign pure values to these output fields, since the
only other possibility would be mempty (i.e. not setting the given field at all), which
is a no-op. So we finish this section by writing a combinator to assign an output
field to a given pure value:

infix 4 .:=
(.:=)

:: (Monoid w, Applicative f, MonadWriter w m)
=> Setter' w (f a) -> a -> m ()

fd .:= x = scribe fd (pure x)

outputCell :: Cell -> CPU ()
outputCell x = do

output .:= x
goto WaitOutput

Chapter 12 Brainfuck206

12.6.2 Reading from synchronous memory

Since we want to use available block RAM elements to implement memory, we
will connect synchronous memory to our CPU. This has two consequences for CPU
design: read addresses have to be set one cycle in advance, and write requests take
one cycle to have an effect.

The first constraint means if we want to implement an instruction that both
changes the cell pointer and manipulates the cell data, it will have to take at least
two cycles: the first to change the pointer and put the changed value on the address
output, and the second to process the input coming from the memory, based on
the changed address. The Brainfuck instruction set has no such instructions, which
simplifies matters for us: > and < only change the pointer without manipulating cell
values, and the other instructions only operate on the currently pointed cell. This
means we can get away with putting an internal pointer register in CPUState and
connecting it to the address output, and it will always load the right value from
memory by the time it is used by a non-pointer-changing instruction.

The same consideration could also apply to the program counter. Similar to
the cell pointer, it is true that every time the program counter is changed, fetching
the machine code for the new program location is only needed to execute the next
instruction. So as long as the program counter, as stored in the CPUState, is updated
correctly before outputting it on the program memory address bus, the next cycle
will get from the program ROM the instruction code from that address.

Having convinced ourselves that reading from the program ROM and cell RAM
is an easy matter of maintaining the right address registers in CPUState, we can
try our hand at implementing the instructions that don’t modify cell values, i.e. ev-
erything except , + and -. Let’s start with <, > and . since these don’t involve
complicated program counter calculations. The new fields added to CPUIn feed the
instruction (from program ROM) and the memory cell value (from RAM) to the
CPU:

data CPUIn = CPUIn
{ romRead :: Word8
, ramRead :: Cell
, outputAck :: Bool
}

New fields of CPUState correspond to the two address registers containing the
program counter and the cell pointer; we also switch over to using lenses to access
fields, to reduce the noise of all the modify calls.

12.6 Brainfuck as machine code 207

data CPUState = CPUState
{ _phase :: Phase
, _pc :: PC
, _ptr :: Ptr
}
deriving (Generic, NFDataX)

makeLenses ''CPUState

initState = CPUState
{ _phase = Exec
, _pc = 0
, _ptr = 0
}

And what about CPUOut? Recall that at the topmost level, the end-to-end type of
our CPU implementation is to be the following (simplifying the dom constraint for
brevity):

cpu :: Signal dom CPUIn -> Signal dom CPUOut

To ensure in logicBoard that the romRead and ramReadfields of CPUIn are correctly
filled from the program ROM and the cell RAM, respectively, we need CPUOut to
tell us the right addresses. Combined with the output value coming from the .
instruction, this leads us to define CPUOut as:

data CPUOut = CPUOut
{ romAddr :: PC
, ramAddr :: Ptr
, output :: Maybe Cell
}

However, we also want to assemble CPUOut piecewise, from various monadic
actions, which, in the previous section, has led us to writing our CPU in the
WriterT CPUOut (State CPUState) monad. That would require CPUOut to be a
monoid; with the semigroup operator corresponding to combining partial outputs.
But romAddr and ramAddr should be filled from the CPUState at the end of each cycle;
even for the trivial “CPU” of return (), the two addressing fields of CPUOut should
take the right value.

We solve this problem by making a second datatype PartialCPUOut, where each
field is combined via Last, allowing piecewise assembly inside a WriterT. This
is more generic than strictly needed for us here, since there will be no situations
where we want to write into the ramAddr' and romAddr' fields: they can always be
computed directly from the CPUState at the end of any given cycle. We still include

Chapter 12 Brainfuck208

them here for flexibility, but also for regularity. This regularity will come useful
in the next section, as we will forego the hand-written definition and instances of
PartialCPUOut and derive them from CPUOut itself. But for now, let’s keep it simple
and write everything manually, accepting the seeming redundancy:

data PartialCPUOut = PartialCPUOut
{ _romAddr' :: Last PC
, _ramAddr' :: Last Ptr
, _output' :: Last (Maybe Cell)
}

makeLenses ''PartialCPUOut

instance Semigroup PartialCPUOut where
(PartialCPUOut pc1 addr1 out1) <> (PartialCPUOut pc2 addr2 out2) =

PartialCPUOut (pc1 <> pc2) (addr1 <> addr2) (out1 <> out2)

instance Monoid PartialCPUOut where
mempty = PartialCPUOut mempty mempty mempty

We can then take the PartialCPUOut output of our WriterT and the final CPUState
of our State, and turn it into a full CPUOut in two steps: constructing a default CPUOut,
and updateing it:

type CPU = WriterT PartialCPUOut (State CPUState)

defaultOutput :: CPUState -> CPUOut
defaultOutput CPUState{..} = CPUOut

{ romAddr = _pc
, ramAddr = _ptr
, output = Nothing
}

update :: CPUOut -> PartialCPUOut -> CPUOut
update CPUOut{..} PartialCPUOut{..} = CPUOut

{ romAddr = fromMaybe romAddr $ getLast romAddr'
, ramAddr = fromMaybe ramAddr $ getLast ramAddr'
, output = fromMaybe output $ getLast output'
}

Now we can implement cpu by taking the stateful-and-writing computation
step of our processor, and turning it into a stateful-only function mapping inputs
to outputs by applying the edits from the writer on the default output:

12.6 Brainfuck as machine code 209

cpu
:: (HiddenClockResetEnable dom)
=> Signal dom CPUIn
-> Signal dom (Pure CPUOut)

cpu = mealyState cpuMachine initState

cpuMachine :: CPUIn -> State CPUState CPUOut
cpuMachine = do

edits <- execWriterT (step input)
out0 <- gets defaultOutput
return $ update out0 edits

And finally we get to writing step. If we squint hard enough, its structure
should look very similar to the software implementations: we pattern match on our
internal phase and on the next instruction, and change the state and assemble the
output accordingly.

step :: CPUIn -> CPU ()
step CPUIn{..} = use phase >>= \case

Exec -> fetch >>= \case
'>' -> ptr %= nextIdx
'<' -> ptr %= predIdx
'.' -> outputCell ramRead
'\0' -> phase .= Halt
_ -> return ()

WaitOutput -> when outputAck $ phase .= Exec
Halt -> return ()

where
fetch = do

pc += 1
return $ ascii romRead

The next instruction to execute is available on the romRead field of the CPUIn argu-
ment (we arrange for the romAddr output to ensure that); instead of pattern-matching
on it directly, we access it via fetch which increments the program counter (ensuing
that it is only incremented in cycles where we actually consume the instruction!)
and decodes its ASCII value into a Char, for easier pattern matching. At face value,
that last step sounds like it could lead to very complicated circuitry; however, GHC
and Clash recognizes the immediate pattern matching on the result of ascii in step,
and collapses it all down to a simple byte comparison with 0x3e (for '>'), 0xec (for
'<') and 0x2e (for '.').

It turns out there is one more complication we need to handle before finishing
this section: in the very first cycle, there is no “previous cycle” for the synchronous
memory elements to take the address from. This means both the ramRead and the

Chapter 12 Brainfuck210

romRead fields of CPUIn will be set to undefined values. We can work around this
easily by adding one more constructor to Phase to handle initialization on reset.

data Phase
= Init
| ...

initState = CPUState
{ _phase = Init
...
}

step :: CPUIn -> CPU ()
step CPUIn{..} = use phase >>= \case

Init -> phase .= Exec
...

12.6.3 Getting rid of the PartialCPUOut redundancy

Let’s repeat the definitions of CPUOUt, PartialCPUOut and the latter’s instances, to
show them side by side:

data CPUOut = CPUOut
{ romAddr :: PC
, ramAddr :: Ptr
, output :: Maybe Cell
}

data PartialCPUOut = PartialCPUOut
{ _romAddr' :: Last PC
, _ramAddr' :: Last Ptr
, _output' :: Last (Maybe Cell)
}

makeLenses ''PartialCPUOut

instance Semigroup PartialCPUOut where
(PartialCPUOut pc1 addr1 out1) <> (PartialCPUOut pc2 addr2 out2) =

PartialCPUOut (pc1 <> pc2) (addr1 <> addr2) (out1 <> out2)

instance Monoid PartialCPUOut where
mempty = PartialCPUOut mempty mempty mempty

12.6 Brainfuck as machine code 211

update :: CPUOut -> PartialCPUOut -> CPUOut
update CPUOut{..} PartialCPUOut{..} = CPUOut

{ romAddr = fromMaybe romAddr $ getLast _romAddr'
, ramAddr = fromMaybe ramAddr $ getLast _ramAddr'
, output = fromMaybe output $ getLast _output'
}

What is annoying here is that there are no degrees of freedom in these definitions,
yet we still needed to write them out:

• PartialCPUOut is a record type with exactly the same fields as CPUOut, except
each field is renamed and their type is wrapped in Last.

• The Semigroup and Monoid instances for PartialCPUOut are simply lifting, field-
by-field, the Semigroup and Monoid instances for Last a.

• Because PartialCPUOut is defined to match CPUOut exactly, update can only be
written in one way, by pairing up the matching fields of the two datatypes.

Not only are we writing code that has no creativity left in it, but also we have to
maintain it as CPUOut changes; for example, in the next section when we implement
the +, - and , instructions, we will extend CPUOUt with a new field containing the
write to RAM.

Instead, by using the clever library Barbies, and writing some generic functions
once and for all, we will derive all of the above code just from the definition of
CPUOut. To give a teaser, by the time we finish this section, we will be able to get
rid of the definition of PartialCPUOut, its hand-written instances, and even update,
without having to change outputCell and similar output-assigning functions.

The key to automating the definition of PartialCPUOut is to think of CPUOut as if
it was parameterized by a functor that wraps all its field types:

data HKDCPUOut f = CPUOut
{ _romAddr :: f PC
, _ramAddr :: f Ptr
, _output :: f (Maybe Cell)
}

makeLenses ''HKDCPUOut

Then, we can retrieve CPUOut and PartialCPUOut by setting f to Identity and
Last, respectively. This pattern of datatype is called higher-kinded data (since the
kind of HKDCPUOut is (Type -> Type) -> Type), hence the HKD in the datatype name
HKDCPUOut. If we were to write HKDCPUOut by hand, one road bump would be
that HKDCPUOut Identity would only be isomorphic to CPUOut, in that every field

Chapter 12 Brainfuck212

access would still have to go through the Identity / runIdentity wrapper/un-
wrapper. This is where the Barbies library comes to our help: instead of start-
ing from HKDCPUOut and instantiating it to type CPUOut = HKDCPUOut Identity, we
will start from CPUOut with its simple, unwrapped field types, and use Template
Haskell macros provided by Barbies to turn it into a higher-kinded data type. Then,
CPUOut Covered f will wrap every field in f while CPUOut Bare _ recovers the orig-
inal CPUOut type with no wrapper on the field types. We will use the type variable
b to denote these so-called “Barbie types” that can “change their clothes”:

import Barbies
import Barbies.Bare
import Data.Barbie.TH

-- Definition of CPUOut exactly as before, enclosed in a TH invocation
declareBareB [d|
data CPUOut = CPUOut

{ _romAddr :: PC
, _ramAddr :: Ptr
, _ramWrite :: Maybe Cell
, _output :: Maybe Cell
, _inputNeeded :: Bool
} |]

makeLenses ''CPUOut

type Pure b = b Bare Identity
type Partial b = b Covered Last

This single-line definition of Partial CPUOut gives us a type that has the same
fields as CPUOut, wrapped in Last; while Pure CPUOut is the same as our original
CPUOut type, i.e. where all the fields are unwrapped.

And what about the Semigroup and Monoid instances? The Barbies library con-
tains a simple newtype wrapper Barbie b fwhich has these instances implemented
exactly how we need them – by using the instances of f a, field by field. So in our
example, Barbie (CPUOut Covered) Last comes with a Monoid instance, making it
ready to be used with the WriterT in CPU. We change the definition of Partial b
to use this Barbie-wrapped version, for brevity in other definitions, and make our
CPU type an instantiation of the more generic monad for CPU descriptions, which
we name CPUM, to be re-used in further chapters:

type Partial b = Barbie (b Covered) Last

type CPUM s o = WriterT (Partial o) (State s)
type CPU = CPUM CPUOut CPUState

12.6 Brainfuck as machine code 213

Moreover, the Barbies library allows us to zip the fields of a b f and a b g with
some function forall a. f a -> g a -> h a into a b h; in particular, that allows
us to implement update as a function of type Pure b -> Partial b -> Pure b. The
complete code, while quite complicated (especially with all the Barbies-imposed
typeclass constraints), doesn’t really do anything deep. It is perfectly fine to just
accept it as-is, shove it in a library, and be done with it:

update
:: (BareB b, ApplicativeB (b Covered))
=> Pure b -> Partial b -> Pure b

update initials edits =
bstrip $ bzipWith update1 (bcover initials) (getBarbie edits)

where
update1 :: Identity a -> Last a -> Identity a
update1 initial edit = maybe initial Identity (getLast edit)

Now we have seen how to get rid of the hand-written PartialCPUOutdatatype def-
inition, its instance implementations, and update. However, there is still one piece
missing: how do we change code, such as outputCell, to produce a Partial CPUOut
instead of a PartialCPUOut? We change the definition of (.:=) to work with any
Barbie type, as long as all its fields are monoids, by lifting the field lens to Barbie
via an isomorphism:

infix 4 .:=
(.:=)

:: (Applicative f, MonadWriter (Barbie b f) m)
=> Setter' (b f) (f a) -> a -> m ()

fd .:= x = scribe (iso getBarbie Barbie . fd) (pure x)

12.6.4 Writing to synchronous memory

In this section, we implement the instructions that directly change memory cells:
the +, - and , instructions. In our hardware implementation, this means writing to
synchronous memory.

The challenge here is that a write request to a blockRam1 will only influence
reads after a full cycle. Suppose we implemented + as simply setting an output
pin ramWrite to Just (nextIdx ramRead): in this case, the instruction immediately
afterwards would still see the not-yet-incremented value on next cycle’s ramRead.
Starting with a cell value of 0, the effect of +-.. would be to print 1 followed by 255,
and leave the cell value at 255:

Chapter 12 Brainfuck214

Cycle Instruction ramRead ramWrite output

0. + 0 1 -
1. - 0 255 -
2. . 1 - 1
3. . 255 - 255

We could solve this by keeping an internal register in CPUState that caches the
current cell’s value: + would not only assign nextIdx cache to the ramWrite output,
but also change the cache register. This would require careful invalidation of the
cache whenever the pointer changes (i.e. in < and > instructions).

Here, we go for another solution: we simply give enough time for the memory to
finish its write operation, before consuming its read output. We do this by adding
a WaitWrite phase, and entering it whenever we set ramWrite:

data Phase
= WaitWrite
| ...

declareBareB [d|
data CPUOut = CPUOut

{ ...
, _ramWrite :: Maybe Cell
} |]

writeCell :: Cell -> CPU ()
writeCell x = do

ramWrite .:= Just x
phase .= WaitWrite

We then handle WaitWrite in every execution step by going back to Exec. We
can think of WaitWrite as a counter to 1, the delay needed to let the RAM catch
up with the writes. The new branches of step to implement cell increment and
decrement instructions + and - is as follows:

step :: CPUIn -> CPU ()
step CPUIn{..} = use phase >>= \case

Exec -> fetch >>= \case
'+' -> writeCell $ nextIdx ramRead
'-' -> writeCell $ prevIdx ramRead
...

WaitWrite -> phase .= Exec
...

12.6 Brainfuck as machine code 215

To implement the , input instruction, we add a new output pin to signal our
need for a new input, and then start waiting for a Just value from the peripherals.
When it arrives, we proceed as in + and - by setting the memory write pin and
entering the WaitWrite phase, as implemented in writeCell:

data Phase
= WaitInput
| ...

declareBareB [d|
data CPUOut = CPUOut

{ ...
, _inputNeeded :: Bool
} |]

data CPUIn = CPUIn
{ ...
, input :: Maybe Cell
}

startInput :: CPU ()
startInput = do

inputNeeded .:= True
phase .= WaitInput

Accordingly, the new branches of step are as follows:

step :: CPUIn -> CPU ()
step CPUIn{..} = use phase >>= \case

Exec -> fetch >>= \case
',' -> startInput
...

WaitInput -> traverse_ writeCell input
...

12.6.5 Control flow

The only remaining instructions to implement are the looping constructs [and].
Our software bytecode interpreter version already showed what we need to do in
terms of program counter maintenance, and the version with external memory also
showed how to use a small array of program addresses as a stack. We can import
that solution wholesale into the hardware implementation by adding the stack to
CPUState, and introducing a new Phase for skipping ahead to a matching]. Because
this rounds off our CPU implementation, it is perhaps instructive to include the full
code here, not just the new constructors and new branches:

Chapter 12 Brainfuck216

data CPUIn = CPUIn
{ romRead :: Word8
, ramRead :: Cell
, outputAck :: Bool
, input :: Maybe Cell
}

declareBareB [d|
data CPUOut = CPUOut

{ _romAddr :: PC
, _ramAddr :: Ptr
, _ramWrite :: Maybe Cell
, _output :: Maybe Cell
, _inputNeeded :: Bool
} |]

makeLenses ''CPUOut

data Phase
= Init
| Exec
| Skip (Index StackSize)
| WaitWrite
| WaitOutput
| WaitInput
| Halt
deriving (Show, Generic, NFDataX)

data CPUState = CPUState
{ _phase :: Phase
, _pc :: PC
, _stack :: Stack StackSize PC
, _ptr :: Ptr
}
deriving (Generic, NFDataX)

makeLenses ''CPUState

initCPUState :: CPUState
initCPUState = CPUState

{ _phase = Init
, _pc = 0
, _stack = Stack (repeat 0) 0
, _ptr = 0
}

12.6 Brainfuck as machine code 217

pushPC :: CPU ()
pushPC = do

pc <- use pc
stack %= push (pc - 1)

popPC :: CPU ()
popPC = do

(pc', stack') <- uses stack pop
pc .= pc'
stack .= stack'

step :: CPUIn -> CPU ()
step CPUIn{..} = use phase >>= \case

Halt -> return ()
Init -> phase .= Exec
Skip depth -> fetch >>= \case

'[' -> phase .= Skip (depth + 1)
']' -> phase .= maybe Exec Skip (predIdx depth)
_ -> return ()

Exec -> fetch >>= \case
'>' -> ptr %= nextIdx
'<' -> ptr %= prevIdx
'+' -> writeCell $ nextIdx ramRead
'-' -> writeCell $ prevIdx ramRead
'.' -> outputCell ramRead
',' -> startInput
'[' -> if ramRead /= 0 then pushPC else phase .= Skip 0
']' -> popPC
'\0' -> phase .= Halt
_ -> return ()

WaitWrite -> phase .= Exec
WaitOutput -> when outputAck $ phase .= Exec
WaitInput -> traverse_ writeCell input

where
fetch = do

pc += 1
return $ ascii romRead

Note that we use fetch both in the Skip and the Exec phases, since in both we
want to look at the current instruction and increment the program counter stored in
the pc register. When Exec encounters an end-of-loop] instruction, popPC changes
the pc register again. We are changing one register twice in a clock cycle, is that
something that actually makes sense in hardware?

The answer is yes, because step is not describing a circuit directly. Note the type

Chapter 12 Brainfuck218

of step – once all the newtype wrappers of WriterT and State are removed, it is
isomorphic to a pure function of the following type:

step :: CPUIn -> CPUState -> (Partial CPUOut, CPUState)

No signals or bona-fide registers anywhere! When mealyState then turns it
into a signal function of type Signal dom CPUIn -> Signal dom CPUOut, everything
happening inside step will happen in one clock step (as the name implies). If we
did something like:

foo = do
reg1 .= x
...
y <- f <$> use reg1
...
reg1 .= y

then it corresponds to a circuit where the field reg1 of the state register is up-
dated directly to y, with the value x fed to the computation of f. In other words,
computations involving use reg1 at various points of foo are all compiled into a
combinational circuit of just the initial value of reg1 (and other fields of the state
register they might use), and the final value assigned to reg1 is what gets written
back to the state register at the end of the clock cycle.

And so we have our complete step function, which, via cpuMachine and
mealyState, yields the full CPU of the following type:

cpu
:: (HiddenClockResetEnable dom)
=> Signal dom CPUIn
-> Signal dom CPUOut

cpu = mealyState cpuMachine initState

12.7 High-level simulation of the CPU

Before we move on to implementing other parts of our complete Brainfuck computer,
let’s pause and enjoy what we have so far, by putting up enough of a support
structures around it that we can simulate the execution of Brainfuck programs.

Our cpuMachine function computes the CPU’s output from its input (hence the
name), with State CPUState being its only effect. Notably, it is not a signal function:

cpuMachine :: CPUIn -> State CPUState (Pure CPUOut)

12.7 High-level simulation of the CPU 219

This means that, similar to previous designs such as the desktop calculator
or the game of Pong, we managed to arrange things such that we can interact
with it from “normal” (i.e. software-oriented) Haskell. We start with writing the
counterpoint of cpuMachine: a function that consumes the CPUOut, and produces
the next cycle’s CPUIn. This process uses the IO and memory effects from MonadBFIO
and MonadBFMemory, respectively, to implement “the world outside the CPU”:

world :: (MonadBFMemory m, MonadBFIO m) => Pure CPUOut -> m CPUIn
world CPUOut{..} = do

romRead <- readProgROM _romAddr
ramRead <- readRAM _ramAddr
input <- if _inputNeeded then Just <$> doInput else return Nothing
traverse_ (writeRAM _ramAddr) _ramWrite
traverse_ doOutput _output
outputAck <- return True

return CPUIn{..}

Of particular note here is the ordering of the RAM effects. By running readRAM
before writeRAM, we ensure that our semantics matches that of Clash’s blockRAM1:
write requests from a given cycle only influence reads after the next cycle. The other
effects are quite straightforward. Since we apply doOutput on _output as soon as it
is available, there is no need to do any buffering: we can keep outputAck at True to
signal that every output request is immediately processed.

We then connect cpuMachine and world by combining their effects and also
storing the CPUIn between cycles in our state:

simulateCPU :: (MonadBFMemory m, MonadBFIO m) => StateT (CPUIn,
CPUState) m ()

simulateCPU = do
(inp, s) <- get
let (out, s') = runState (cpuMachine inp) s
inp' <- lift $ world out
put (inp', s')

Our main function then can peel off the effects into IOone by one. We already have
runBFVec to run a MonadBFMemory-using computation by using vectors to represent
program ROM and cell RAM. The CPUIn component of the state can be initialized
with some “neutral” field values – we have already seen that in a real circuit, the
output of the memory components is undefined in the first cycle, and we have
arranged for it not to be a problem by adding the Init phase.

Chapter 12 Brainfuck220

main :: IO ()
main = do

prog <- prepareIO

runBFVec (stringToROM $ loadVec prog '\0') $
let initInput = CPUIn

{ romRead = 0
, ramRead = 0
, outputAck = False
, input = Nothing
}

flip evalStateT (initInput, initCPUState) $ forever simulateCPU

Exercise:

• Test the “read-and-write” problem of the +-.. program with the simulator.
Remove the WaitWrite phase, and observe the change in output (it might be
a good idea for this to change the MonadBFIO instance of IO to print cell values
numerically). What happens if we also change the world so that writes happen
before reads?

12.8 The logic board

If we imagine a computer built on various modular boards, in this section we turn
our attention to the board containing all the logic elements: the CPU, the program
ROM, and the cell RAM. This “board” has “connectors” corresponding to input
and output from/to the outside world, via peripheral drivers. The two inputs
correspond to the input and outputAck fields of CPUIn, while the two outputs are
assigned by inputNeeded and output of CPUOut. All other pins of the CPU will be
connected to other components on this same board.

logicBoard
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe Cell)
-> Signal dom Bool
-> (Signal dom Bool, Signal dom (Maybe Cell))

The CPU consumes the next instruction’s machine code from the program ROM,
and produces the address of the subsequent instruction’s address, so the connection
between the CPU and the program ROM is necessarily circular. The same applies
to the RAM holding the cell values: the currently selected cell’s value is an input

12.8 The logic board 221

to the CPU, and its output contains the next cell’s address and, optionally, its write
value.

This is similar to circuits involving feedback on a single register: the recursion
between the address signal and the data-out signal of the memory primitives is
guarded by the memory primitive itself, ensuring well-formedness. We show the
basic form of logicBoard first, before filling in the details:

logicBoard inputValue ack = (_inputNeeded <$> cpuOut, _output <$> cpuOut)
where
cpuOut = cpu cpuIn

romRead = unpack <$> romFilePow2 "hello.rom" romAddr
ramRead = blockRam1 NoClearOnReset (SNat @30_000) 0 ramAddr ramWrite

We use romFilePow2 (as in, romFile with a power-of-2 size) instead of vanilla
romFile because the former gives us better type inference: with romFile, we would
have to specify the address bus width of 12 manually.

The unpack post-processing in romRead is needed because romFilePow2 compiles
to an HDL primitive that initializes the ROM contents from the file "hello.rom",
without making any assumptions on its data format. On the Clash side, we interpret
the 8-bit values in "hello.rom" as Word8s, and then, subsequently, as Chars courtesy
of our ascii function. For example, the first couple values for our Hello World
program might look like this:

Address "hello.rom" unpack @Word8 ascii

0 00101011 0x2b '+'
1 00001010 0x0a '\n'
2 01011011 0x5b '['
3 00001010 0x0a '\n'
4 00100000 0x20 ' '
5 00100000 0x20 ' '
6 00101101 0x2d '-'
7 00001010 0x0a '\n'
8 00100000 0x20 ' '
8 00100000 0x20 ' '
10 01011011 0x5b '['

The full program is the same as before, deliberately exercising our implemen-
tation of ignoring non-significant characters (anything other than ><+-.,[]), by
showing structure using whitespace.

Chapter 12 Brainfuck222

+
[
-
[
<<
[+ [--->] - [<<<]]

]
>>>-

]
>-.---.>..>.<<<<-.<+.>>>>>.>.<<.<-.

We turn this into a binary .rom file and pass that to romFile because that is
what downstream synthesis tools understand – the HDL emitted by Clash doesn’t
contain the data, it only contains the filename hello.rom. One benefit of this is that,
conditional on our synthesis toolchain supporting this, we can replace the contents
of hello.rom and avoid re-synthesizing everything else.

We can convert a list of bytes into the file format used by romFile by simply going
printing each line in binary. The size has to match the ROM size exactly, which we
can ensure (if needed) by padding with 0 bytes:

binLines :: Maybe Int -> [Word8] -> [String]
binLines size bs = map (printf "%08b") bytes
where
bytes = maybe id ensureSize size bs
ensureSize size bs = take size $ bs <> repeat 0x00

This leaves us with the following definitions in logicBoard to be written:

• Filling all the fields of cpuIn, from logicBoard’s arguments and the outputs of
the memory elements

• Extracting the right address inputs for the blockRam1 and the romFile

The first part benefits a lot from the synergy of the ApplicativeDo and
RecordWildCards language extensions to connect signals to each field of CPUIn:

logicBoard inputValue ack = ...
where
...
cpuIn = do

romRead <- romRead
ramRead <- ramRead
outputAck <- ack
input <- inputValue
pure $ CPUIn{..}

12.8 The logic board 223

The memory address and memory write signals are similarly extracted from the
fields of cpuOut. Note that Clash’s blockRam1 primitive is a true dual-port RAM: the
write address (in ramWrite) can be specified independently of the read address (in
ramAddr). Our Brainfuck CPU, however, has a single address output that is used
both to read from and to write to memory, so we pair it with the value to be written
(if it is a Just value):

logicBoard inputValue ack = ...
where
...
romAddr = _romAddr <$> cpuOut
ramAddr = _ramAddr <$> cpuOut
ramWrite = packWrite <$> ramAddr <*> (_ramWrite <$> cpuOut)

packWrite :: addr -> Maybe val -> Maybe (addr, val)
packWrite addr val = (addr,) <$> val

This pattern of merging an address line (used for both reading and writing) and
an optional write line will be a common one in this book, because it matches the
interface of the hardware memory elements used in the real-life computers we will
be interested in, to the dual-port block RAM components of FPGAs.

12.8.1 Record syntax via Barbies

If we look at the whole of logicBoard, one thing to notice is that the majority of its
code is just shoveling signals in and out of CPUIn and CPUOut, compared to the useful
part of defining the memory elements and their connections to the CPU pins:

logicBoard inputValue ack =
(_inputNeeded <$> cpuOut, _output <$> cpuOut)

where
cpuOut = cpu cpuIn

romRead = unpack <$> romFilePow2 "hello.bf" romAddr
ramRead = blockRam1 NoClearOnReset (SNat @30_000) 0 ramAddr ramWrite

cpuIn = do
romRead <- romRead
ramRead <- ramRead
outputAck <- ack
input <- inputValue
pure $ CPUIn{..}

Chapter 12 Brainfuck224

romAddr = _romAddr <$> cpuOut

ramAddr = _ramAddr <$> cpuOut
ramWrite = packWrite <$> ramAddr <*> (_ramWrite <$> cpuOut)

This is because cpuIn and cpuOut are both signals containing records. If, instead,
they were records containing signals, we could refer to their fields directly instead of
picking them out one by one with (<$> cpuOut) and, conversely, assembling them
into cpuIn by binding each signal’s value separately. If we had them as records of
signals, we could use the field names directly in conjunction with record wildcard
syntax, leading to a much more lightweight implementation:

logicBoard input outputAck = (_inputNeeded, _output)
where
CPUOut{..} = cpu CPUIn{..}

romRead = unpack <$> romFilePow2 "hello.bf" _romAddr
ramRead = blockRam1 NoClearOnReset (SNat @30_000) 0 _ramAddr write
write = packWrite <$> _ramAddr <*> _ramWrite

However, this puts cpu into a tight spot: if its inputs and outputs are records of
signals, what are the pure record type to use in cpuMachine and step?

What we are looking for, then, is a way to bundle the CPUIn argument before
passing it to mealyState, and then unbundle its CPUOut result. Before we can start
thinking about how to implement these instantiations of bundle and unbundle, we
first need to know what their types should be. We want bundle to go from a record
where each field’s type is wrapped in Signal dom, to a Signal dom containing a pure
record.

Sounds like a job for Barbies: we already know that if b is a Barbie-type, we can
use Signal dom (Pure b) to describe the type of a signal containing a pure record.
Similarly, b Covered (Signal dom) is the type where every a-typed field becomes a
Signal dom a:

type Signals dom b = b Covered (Signal dom)

bbundle :: _ => Signals dom b -> Signal dom (Pure b)

The constraint hole in the type of bbundle is to emphasize the fact that we
haven’t figured out yet what exactly we’ll require of b: that will follow from the
implementation. We implement bbundle in two steps: first, for any appropriate
Barbie-type, we can collect all effects from the fields with the Barbies equivalent

12.8 The logic board 225

of the Traversable typeclass’s sequence, called bsequence. We’ll use its version
bsequence' specialized for returning pure (Identity-wrapped) fields:4

bsequence' :: _ => b Covered f -> f (b Covered Identity)

Almost there, except we also want to get rid of the Identity wrappers in the
result type. We can compose this with bstrip which removes the cover of a Barbie-
type:

bstrip :: _ => b Covered Identity -> Pure b

Filling in the details of the typeclass constraints, we get the following definition;
turns out there is no reason to restrict ourselves to Signal dom:

bbundle
:: (Applicative f, BareB b, TraversableB (b Covered))
=> b Covered f
-> f (Pure b)

bbundle = fmap bstrip . bsequence'

To go in the other direction, we need the ability to push the effect of creating
a pure value into the individual fields. The opposite of bsequence' is the Barbies
equivalent of distribute, again specialized to Identity:

bdistribute' :: _ => f (b Covered Identity) -> b Covered f

Which we can combine with bcover into the following function:

bunbundle
:: (Functor f, BareB b, DistributiveB (b Covered))
=> f (Pure b)
-> b Covered f

bunbundle = bdistribute' . fmap bcover

Of course, we can also package the pair of functions bbundle and bunbundle into
a proper Bundle instance:

instance
(BareB b, TraversableB (b Covered), DistributiveB (b Covered)) =>
Bundle (Pure b) where

4Strictly speaking, in the code used in this chapter and the remainder of the book, b Covered is a
Barbie-type, not b. We use the Barbies library this way so that we also have access to b Bare Identity,
where we don’t have to bother with the Identity wrapper around fields. The Barbies type signatures
shown in this chapter have all been specialized for b Covered.

Chapter 12 Brainfuck226

type Unbundled dom (Pure b) = Signals dom b
bundle = bbundle
unbundle = bunbundle

Armed with these definitions, and wrapping the definition of the CPUIndatatype
in declareBareB just like CPUOut, we can change cpu to expose a Signals interface to
logicBoard (and making sure we use Pure CPUIn everywhere else):

cpu
:: (HiddenClockResetEnable dom)
=> Signals dom CPUIn
-> Signals dom CPUOut

cpu = mealyStateB cpuMachine initState

With this definition of cpu, we can replace logicBoard’s implementation with
the more concise one that uses record wildcards.

12.9 Low-level simulation of the logic board

So far, we have always opted for high-level simulation: taking non-signal functions
and running them in a software Haskell context. We cannot apply the same ap-
proach to logicBoard, because it is fundamentally about connecting signals. The
high-level CPU simulator has already shown how to simulate its main interesting
component, the CPU itself; but what if we want to simulate how that CPU is hooked
up to the other components?

To motivate this, we can think back to the “read-and-write” problem of the
program +-... We haven’t really discovered that problem on our own – instead, we
arrived at it from first principles, reasoning about the behavior of Clash’s blockRAM1
primitive. Maybe it even felt like reading it in a book written by someone in advance.
Sure, the CPU simulator would have shown this problem, but that is only because
we took care to use the MonadBFMemory primitives in such a way that they model
blockRAM1. If, instead, we start from the full logicBoard, we can observe and test
the behaviour of blockRAM1 itself, in conjunction with the full circuitry connecting
blockRAM1, romFilePow2 and the CPU.

There are two problems we need to address to be able to do this:

• Specific to our Brainfuck computer, we need a way to configure the ROM
contents. Currently, it is hardcoded to take it from the file hello.rom which
we arrange to contain the Hello World program in the appropriate binary
image format. This makes sense for hardware: the contents of ROM chips is
set in stone once synthesis finishes. But for the simulation, we’d like the same

12.9 Low-level simulation of the logic board 227

flexibility as all the previous software implementations and the high-level
simulator.

• Generally, have a signal-to-signal function that we would like to simulate
interactively. For example, one of the arguments to logicBoard is a signal
containing the latest input from the peripheral controllers; but we need to
present previous outputs (from other signals in the result of logicBoard).

We solve the first problem in two steps: adding a parameter to logicBoard for
the filename of the binary image dump of the ROM contents, and then in main,
creating a temporary file in the right format from the text file input. The change to
logicBoard is straightforward:

logicBoard
:: (HiddenClockResetEnable dom)
=> FilePath
-> Signal dom (Maybe Cell)
-> Signal dom Bool
-> (Signal dom Bool, Signal dom (Maybe Cell))

logicBoard programFile inputValue ack = ...
where
romRead = unpack <$> romFilePow2 programFile romAddr
...

To actually create programFile, we use the Temporary library to create-and-open
a new file in the host system’s directory for temporary files, write the program string
to it using binLines, and then close the write handle before passing its (randomized)
file name to logicBoard.

import System.IO
import System.IO.Temp

main :: IO ()
main = withSystemTempFile "brainfuck-.rom" $ \romFile romHandle -> do

prog <- stringToROM <$> prepareIO
hPutStr romHandle . unlines $
binLines (Just (snatToNum (SNat @ProgSize))) prog

hClose romHandle

let board = logicBoard romFile
...

Here, withSystemTempFile "brainfuck-.rom" generates filenames like
/tmp/brainfuck-26160-0.rom during runtime, atomically picking a fresh file

Chapter 12 Brainfuck228

and opening it. It also takes care of deleting the file on exit. Note the use of hClose
before handling romFile to logicBoard: otherwise, Clash will fail trying to simulate
the romFilePow2 inside board, since the file it tries to load is locked.

For the second problem, we are looking for a way to connect a signal function
of type Signal dom i -> Signal dom o to the outside world modeled as o -> IO i.
In earlier chapters, we used the sample interface to Clash’s simulator, which turns
an output Signal into a list of values. To feed the input values into the input signal
elementwise, observing the output signal’s values in the process, we can use a
different interface: signalAutomaton.

The idea behind signalAutomaton is to turn a Signal dom i -> Signal dom o
signal function into a stateful function producing an o and a new function from the
next i in one step. The Automaton type instantiated by Clash is imported from the
Arrows package; we reproduce its definition and signalAutomaton’s type signature
below (with suggestive type variable names) to show the building blocks we are
going to use:

newtype Automaton arr i o = Automaton (arr i (o, Automaton arr i o))

signalAutomaton
:: (KnownDomain dom)
=> (HiddenClockResetEnable dom => Signal dom i -> Signal dom o)
-> Automaton (->) i o

What we need to do is wedge our IO function in there somehow: given some
initial input i0, we want to run the automaton’s step function to get the first output
o0, which we can then pass to the world to get the next input i1, and so on. To
allow stepwise execution, we can keep the current automaton (i.e. the next step) in
a mutable reference updated at each call. At its simplest version, we could do it like
the following:

simulateIO
:: (KnownDomain dom)
=> (HiddenClockResetEnable dom => Signal dom i -> Signal dom o)
-> i
-> (o -> IO i)
-> IO (IO ())

simulateIO circuit input0 world = do
let Automaton step = signalAutomaton circuit
ref <- newMVar $ step input0
return $ do

(out, Automaton step) <- liftIO $ takeMVar ref
(input, result) <- world out
liftIO $ putMVar ref $ step input

12.9 Low-level simulation of the logic board 229

We can refine this design a bit by allowing simulation in any MonadIO, allowing
the world to be replaced for every simulation step, and getting a stepwise result
more informative than ():

simulateIO
:: (KnownDomain dom, MonadIO m)
=> (HiddenClockResetEnable dom => Signal dom i -> Signal dom o)
-> i
-> IO ((o -> m (i, a)) -> m a)

simulateIO circuit input0 = do
let Automaton step = signalAutomaton circuit
ref <- newMVar $ step input0
return $ \world -> do

(out, Automaton step) <- liftIO $ takeMVar ref
(input, result) <- world out
liftIO $ putMVar ref $ step input
return result

As usual for functions where sometimes the effects are all that matter, we recover
a version of simulateIO that has no return value:

simulateIO_
:: (KnownDomain dom, MonadIO m)
=> (HiddenClockResetEnable dom => Signal dom i -> Signal dom o)
-> i
-> IO ((o -> m i) -> m ())

simulateIO_ circuit input0 = do
sim <- simulateIO circuit input0
return $ \world -> do

void $ sim $ \output -> do
input <- world output
return (input, ())

We finish our low-level logic board simulator by just running the interactive
simulation forever. Since the simulated circuit now includes the memory elements,
only the IO effects remain to be implemented by world. Intuitively, it makes sense:
if more parts are inside the boundary of the simulation, the world outside that
boundary shrinks by that much.

world :: (MonadBFIO m) => (Bool, Maybe Cell) -> m (Maybe Cell, Bool)
world (inputNeeded, output) = do

traverse_ doOutput output
input <- if inputNeeded then Just <$> doInput else return Nothing
return (input, True)

Chapter 12 Brainfuck230

main :: IO ()
main = withSystemTempFile "brainfuck-.rom" $ \romFile romHandle -> do

prog <- stringToROM <$> prepareIO
hPutStr romHandle . unlines $
binLines (Just (snatToNum (SNat @ProgSize))) prog

hClose romHandle

sim <- simulateIO_ @System
(bundle . uncurry (logicBoard romFile) . unbundle)
(Nothing, False)

forever $ sim world

12.10 Top-level circuit and peripherals

To finish our Brainfuck computer, we need to implement the peripherals for input
and output:

• A pushbutton will serve as an acknowledgment trigger for both inputs and
output.

• We’ll use a keypad to input 8-bit inputs as two hexadecimal digits; for example,
we’ll input 3216 as 3 2 Button . This also allows for correcting input; for
example, the result of 4 3 2 Button is the same.

• A seven-segment display will show either the current output or the input
under editing. To avoid confusing with the digits 0 and 1, we’ll display a
lowercase o and i showing output or input mode.

Of course, most of the heavy lifting will be done with functions from earlier chapters:
driveSS and encodeHexSS for the display, and inputKeypad for the hexadecimal
keypad.

12.10.1 Input driver

The input driver connects to the pushbutton and the keypad, and returns the ac-
knowledgment signal and the input buffer’s value. The latter will be connected
both to the logic board, for consumption; and the display driver, for feedback while
editing.

12.10 Top-level circuit and peripherals 231

inputs
:: (HiddenClockResetEnable dom, _)
=> Signal dom (Active btn)
-> Signal dom (Vec 4 (Active row))
-> (Signal dom (Vec 4 (Active col))

, Signal dom Bool
, Signal dom Cell
)

Internally, the pushbutton input btn is debounced and fed to a rising edge
detector so that its single presses can be used as the acknowledgment signal:

inputs btn rows = (cols, ack, buffer)
where
ack =

isRising False $
debounce (SNat @(Milliseconds 5)) False $
fromActive <$> btn

... -- Continued below

For the buffer holding the input cell value, we need to keep a two-digit editing
area that is updated from keypresses. Also, whenever the user enters a value (by
pressing the button that fires the ack signal), we want to zero out the buffer so that
the next input starts from a clean slate.

(cols, key) = inputKeypad keymap rows
buffer = bitCoerce <$> shiftInReg zero (enable ack $ pure zero) key
zero = repeat 0x0

Here, we use the helper function shiftInReg to collect input events. We imple-
ment a shift-in register where we can load in a new vector whole-sale, or push a
new element to the rightmost end of the vector. We use muxA, an n-ary version of
mux for Alternatives such as Maybe, to prioritize load over new elements.

shiftInReg
:: (KnownNat n, NFDataX a, HiddenClockResetEnable dom)
=> Vec n a
-> Signal dom (Maybe (Vec n a))
-> Signal dom (Maybe a)
-> Signal dom (Vec n a)

Chapter 12 Brainfuck232

shiftInReg initial load new = vec
where
vec = regMaybe initial $ muxA [load, shiftIn <$> vec <*> new]
shiftIn current new = (current <<+) <$> new

Since the Alternative laws prescribe (<|>) to be associative, we can use the
Foldable typeclass’s foldMap method instead of restricting left- or right-association
of the result with foldl or foldr. For certain choices of Foldable, most importantly
for Vec n, this can result in more efficient simulation and/or a smaller circuit. The
two helper types Ap and Alt are needed to lift the underlying Alternative m instance
into a Monoid (f (m a)).

import qualified Data.Foldable as F
import Data.Monoid (Alt(..), Ap(..))

muxA
:: (Foldable t, Alternative m, Applicative f)
=> t (f (m a))
-> f (m a)

muxA = fmap getAlt . getAp . F.foldMap (Ap . fmap Alt)

Throughout the rest of the book, we will also make good use of other Alternative
operators lifted to signals, so we define them here wholesale:

infixl 3 .<|>.
(.<|>.) :: (Applicative f, Alternative m) => f (m a) -> f (m a) -> f (m

a)
(.<|>.) = liftA2 (<|>)

infix 2 .|>., |>., .<|., .<|

(.|>.) :: (Applicative f) => f a -> f (Maybe a) -> f a
(.|>.) = liftA2 fromMaybe

(|>.) :: (Applicative f) => a -> f (Maybe a) -> f a
x |>. fmx = fromMaybe x <$> fmx

(.<|.) :: (Applicative f) => f (Maybe a) -> f a -> f a
(.<|.) = flip (.|>.)

(.<|) :: (Applicative f) => f (Maybe a) -> a -> f a
(.<|) = flip (|>.)

12.10 Top-level circuit and peripherals 233

Since we are using a hexadecimal keypad to input hexadecimal digits, the
keymap is the “identity keymap” that maps every key to its own value:
keymap :: Matrix 4 4 (Unsigned 4)
keymap =

(0x1 :> 0x2 :> 0x3 :> 0xa :> Nil) :>
(0x4 :> 0x5 :> 0x6 :> 0xb :> Nil) :>
(0x7 :> 0x8 :> 0x9 :> 0xc :> Nil) :>
(0x0 :> 0xf :> 0xe :> 0xd :> Nil) :>
Nil

12.10.2 Display driver

The display driver’s job is to show either the current output or the currently edited
input on a seven-segment display. We are going to use three seven-segment digits:
the first one will show a lowercase i. or o. to tell the user if it is waiting for
input or showing output, and the next two are used for the two digits themselves.
Consequently, our display driver will work for any display size that has at least
three digits.
display

:: (HiddenClockResetEnable dom, _)
=> Signal dom (Maybe Cell)
-> Signal dom (Maybe Cell)
-> Signal dom (SevenSegment (k + 3) anodes segments dp)

display output inbuf = driveSS displaySS (pad <$> chars)
where
chars = displayChars <$> output <*> inbuf
pad xs = repeat Nothing ++ xs

The actual rendering is done by displaySS. We make an algebraic datatype
for the types of seven-segment characters we want to support, and reuse
encodeHexDigitSS for the case of hexadecimal digits. For other characters, we write
a lowercase i and o by hand, and use the decimal digit separator for the ..

data SSChar
= SSHex (Unsigned 4)
| SSOutput
| SSInput

ssI :: Vec 7 Bool
ssI = False :> False :> True :> False :> False :> False :> False :> Nil

ssO :: Vec 7 Bool
ssO = False :> False :> True :> True :> True :> False :> True :> Nil

Chapter 12 Brainfuck234

displaySS :: SSChar -> (Vec 7 Bool, Bool)
displaySS (SSHex digit) = (encodeHexSS digit, False)
displaySS SSOutput = (ssO, True)
displaySS SSInput = (ssI, True)

12.10.3 The topEntity

We finish our Brainfuck computer by wiring together the logic board and the periph-
eral drivers in topEntity. Connections to the outside world consist of the acknowl-
edgment button, the row and column pins of the keypad, and the seven-segment
display.

topEntity
:: "CLK" ::: Clock System
-> "BTN" ::: Signal System (Active High)
-> "ROWS" ::: Signal System (Vec 4 (Active Low))
-> ("COLS" ::: Signal System (Vec 4 (Active Low))

, "SS" ::: Signal System (SevenSegment 4 Low Low Low)
)

topEntity = withResetEnableGen board
where
board btn rows = (cols, ss)
where
(cols, ack, inBuf) = inputs btn rows
... -- Continued below

At a high level, the internal connections needed are as follows:

• The input driver connects directly to the input peripherals.

• The logic board consumes the input driver’s signals, and its output is fed to
the display driver.

• The display driver is connected not only to the logic board, but also to the
input driver. This is needed to be able to display the already entered digits of
the current input.

The CPU produces output values for a single clock period, allowing peripherals
to distinguish between outputting the same value once or several times. However,
in our computer design, we want to display the current output until the user presses
the acknowledgment button; so we need to use a buffer between the logic board
and the display unit. Similarly, the CPU raises the inputNeeded signal for one clock
period, but we want to display the input prompt until the acknowledgment button
is pressed; so we need another buffer.

12.10 Top-level circuit and peripherals 235

For the output buffer, we want a register that holds the Just values of the output
signal and clears it when ack becomes True. Similarly, for the inputNeeded buffer,
we want to hold True values until ack becomes True. We can generalize these two
cases, and more, by writing a combinator to integrate any monoidal operation;
and then instantiating it for the First and Any monoids. In integrate, we keep an
accumulator in a register, and use the mappend of the monoid to refresh it in each
period, until we get a request to clear the accumulated value.

integrate
:: (Monoid a, NFDataX a)
=> (HiddenClockResetEnable dom)
=> Signal dom Bool -> Signal dom a -> Signal dom a

integrate clear x = acc
where
acc = register mempty $ mux clear x $ mappend <$> acc <*> x

Note that in the clear case, we reset to x, not mempty, to avoid missing the value
of x while clear is asserted.

Using integrate, we define the two buffers by wrapping and then unwrapping
into the right monoid newtypes:

outBuf = fmap getFirst . integrate ack . fmap First $ output
inputNeededBuf = fmap getAny . integrate ack . fmap Any $ inputNeeded

These two are, of course, fed from the output of logicBoard. The inputs to
logicBoard are the output acknowledgment button, and the cell value input sub-
mitted by the user. Submission is also triggered by the ack button, so we gate the
persistent input buffer inBuf with ack. We do this here instead of inputs because
this gives us the flexibility to access inBuf in other contexts as well. By using the
buffered value of inputNeeded, we can see when the user is expected to enter a new
value; in this case, we can display the input buffer without also submitting it to the
logicBoard:

(inputNeeded, output) = logicBoard "hello.rom" (enable ack inBuf) ack
ss = display outBuf (enable inputNeededBuf inBuf)

Exercises:

• Instead of i. and o., get creative with designing seven-segment fonts, and use
three digits to display in and out.

• Implement IO over a serial connection, either replacing the keypad and seven-
segment display, or working with it in conjunction.

Chapter 12 Brainfuck236

12.11 Summary

• Brainfuck is a programming language that lends itself to a simple RAM
machine-based hardware implementation.

• We started with an interpreter for a structured programming language, and
refined it in multiple steps to a bytecode interpreter with memory operations
externalized.

• The CPU is implemented using a State/Writer monad: the State part con-
tains the internal registers, while the Writer aspect assembles the output
piecewise. The Barbies library enables a seamless way of the latter.

• Memory access can necessitate waiting phases.

• We can write simulations at different levels: we can run the monadic CPU
as a normal (non-Signal-level) Haskell function, or we can take the circuit
consisting of the processor and the memory elements, and use Clash’s Signal
simulator interactively.

• Peripherals can be much slower than the processor, requiring flow control
between them. In the Brainfuck machine, the CPU waits for acknowledgment
on output, since otherwise the user would have no opportunity to read the
seven-segment display.

13CHIP-8

CHIP-8 is retrocomputing catnip: a virtual machine for video games from 1978,
originally targeting a line of home computers sold in kit form. It is widely regarded
as an excellent first goal for learning about emulation and virtual machines: on
one hand, it is simple enough that naïve implementation approaches can work
successfully; on the other hand, it is powerful and expressive enough that there are
dozens of video games written for it, and some of those games are even enjoyable!
Thus, it provides that ultimate satisfaction of implementing a machine based on a
pre-existing specification: when the existing software corpus successfully works on
our new implementation.

Although originally a virtual machine, in this chapter we build a hardware
implementation: a computer with a CPU that natively uses the CHIP-8 bytecode
format as its machine code.

13.1 History

The story of the CHIP-8 starts with the RCA 1802 microprocessor. Launched in
1974 as two chips working in tandem, then unified into a single chip in 1976, it was
designed to be inexpensive. The goal of designer Joseph Weisbecker was to put it
in homes, in the form of kit computers and video game consoles.

The COSMAC VIP was one such kit computer, designed by Weisbecker himself.
Released in 1977, it consisted of an RCA 1802 CPU, an RCA CDP1861 video display
chip, a 4× 4 keypad, and 2 kB of RAM1. Overall, the VIP was a small and simplistic
computer compared to its contemporaries like the 1977 “Holy Trinity” of the Com-
modore PET, the TRS-80 and the Apple II. At that time, “high-level programming”
was synonymous with BASIC for home uses; the limitation of the memory size and
a keypad instead of a full keyboard meant that it wasn’t feasible to support BASIC
on the VIP.

1See the August 1977 issue of Byte Magazine for an in-depth contemporary article on the COSMAC
VIP, available at https://archive.org/details/byte-magazine-1977-08

237

https://archive.org/details/byte-magazine-1977-08

Chapter 13 CHIP-8238

Instead, it shipped with CHIP-8: dubbed An Easy Programming System by Weis-
becker in his article in the December 1978 issue of Byte Magazine2, it was aiming for
a sweet spot of working with the limited resources of the COSMAC VIP and simi-
lar RCA 1802-based computers, but still providing enough high level constructs to
empower hobbyist programmers to create fun games:

This article describes a hexadecimal interpretive programming system
which requires less hardware than high level languages such as BASIC,
and which I feel is much easier to use than machine language. In my
experience, hexadecimal interpretive programming is ideally suited to
real time control, video graphics, games or music synthesis. It can be
used with inexpensive computer systems consisting of a hexadecimal
keyboard and only 1 K or 2 K of programmable memory. Expensive
terminals and large memories aren’t required. You can quickly and
easily write useful programs that require five to ten times less memory
than conventional high level languages without resorting to the tedious
complexities of actual machine language.

This article, and the first issue of the COSMAC VIP owners’ magazine VIPER3

are both useful sources of information on the CHIP-8.
The second wave of CHIP-8’s popularity came in 1990, when Andreas Gustafsson

released CHIP-48, a CHIP-8 implementation for the HP 48 series of programmable
graphing calculators4. Understandably, there wasn’t much entertainment content
for a calculator, so the CHIP-8 game library filled this gap without competition.
Later forks of CHIP-48 also extended CHIP-8 with higher resolution graphics modes
and new opcodes; here, we will stick to the original CHIP-8 and not cover these
extensions.

These days, CHIP-8 is a popular platform as a learning project to understand
writing an emulator. The library of games is also growing rapidly, in great part
thanks to Octojam, an online game jam held annually every October5. There is even
a higher-level compiler called Octo6 supporting block-structured programming.

13.2 The CHIP-8 computer

Since some of the CHIP-8 opcodes directly interface with peripherals, a complete
CHIP-8 computer is more than just a virtual CPU executing one instruction after the

2Available at https://archive.org/details/byte-magazine-1978-12-rescan
3Available at https://archive.org/details/viper_1_01/
4Available to this day from Gustafsson’s home page at http://www.gson.org/freeware/
5See https://johnearnest.github.io/chip8Archive/ for an archive of Octojam entries
6Source code at https://github.com/JohnEarnest/Octo

https://archive.org/details/byte-magazine-1978-12-rescan
https://archive.org/details/viper_1_01/
http://www.gson.org/freeware/
https://johnearnest.github.io/chip8Archive/
https://github.com/JohnEarnest/Octo

13.2 The CHIP-8 computer 239

other. Here, we look at the main features of each component; we will come back to
them and discuss them in more detail as we implement them.

13.2.1 Processor

At the center of the CHIP-8 is the CPU. It uses the von Neumann architecture, i.e. the
working memory and the program memory is in the same address space. Its design
is heavily influenced not just by the underlying RCA 1802, but also by its goal of
being an ergonomic platform for program development on the resource-constrained
COSMAC VIP.

The CPU has 16 general-purpose registers, each one holding 8-bit values; all data
arithmetic also operates on 8 bits. The address bus is 12 bits wide; beside the program
counter, there is a secondary pointer register that can be used for indirect (computed)
memory addressing. It also has an internal call stack of depth at least 12. This
stack is managed internally by the virtual machine to implement the CALL and RET
instructions.

The data bus is 8 bits wide, and instructions have a uniform two-byte length.
Although the memory is addressed byte by byte, and instructions are fetched byte
by byte, it is more accurate to say that each instruction consists of four half-bytes, or
nybbles. This is to make it easier to enter the machine code on the original COSMAC
VIP’s hexadecimal keypad. For example, the four-nybble instruction 81A4 stands
for ADD V1, VA: “add the value of register A to register 1 and set register F to the
carry”. Here, the general machine code format of the instruction is 8xy4, where 8
selects arithmetic assignment, x and y are the target and source registers, and the
final 4 selects the arithmetic operation (addition with carry-out, in our example).

Other instructions have components that take up multiple nybbles; for example,
6BE8 loads the one-byte constant 0xe8 into register B (LD VB, 0xe8). Since addresses
are 12 bits wide, instructions that contain an address operand use three of the four
nybbles to contain said address; for instance, 1DAE is the jump instruction JP 0xdae.

13.2.2 Memory

RAM is byte-addressed with the 12-bit address bus of the CPU. This would give
us addresses from 0x000 to 0xfff for a total of 4096 bytes, or 4 kilobytes. How-
ever, addresses below 0x200 are reserved for system use; we will use that address
range to implement the HEX opcode, which loads a memory address that contains
hexadecimal font glyphs.

It is worth noting that the original CHIP-8 implementation ran on machines with
1 or 2 kB of physical RAM, and that RAM had to also include the CHIP-8 interpreter
itself, plus the video buffer, plus the real stack backing the CHIP-8’s virtual in-CPU
stack. So contemporary CHIP-8 games were not guaranteed access to RAM in the

Chapter 13 CHIP-8240

full address range; instead, programs started at 0x200 and the highest valid RAM
address was implementation-dependent.

Of course these days, these limitations are no longer relevant, so we will populate
the full 0x200..0xfff range. Also, to simplify things, the video buffer will be stored
entirely separate in a different block RAM element.

13.2.3 Graphics

Compared to their more sophisticated and pricier contemporaries, the most stun-
ning user-visible limitation of the COSMAC VIP and similar computers was their
graphical capabilities: 64 × 32 black-or-white pixels. Truly just black or white, not
even grayscale: each pixel is either black, or white. And so, that is what we get in
the CHIP-8 as well:

Creativity thrives under limitations, though, and there are some very clever
CHIP-8 games that do a lot with this few pixels, as shown in this montage of various
screenshots from https://johnearnest.github.io/chip8Archive/:

https://johnearnest.github.io/chip8Archive/

13.2 The CHIP-8 computer 241

The CPU controls the video output by accessing a special piece of memory, the
video buffer, through the instructions CLS and DRW. CLS stands for “CLear Screen” and
changes the whole screen to black. DRW updates a user-specified rectangular area of
the screen by combining a pattern stored in RAM with the current screen contents
using pixel-by-pixel XOR. We make a quick note here that this means we’ll need to
read the video buffer as part of writing it; this point will become important later.

Although strictly speaking not part of the CHIP-8 graphics subsystem, we in-
clude here the program-accessible timer here as well. There is a special register
in the CPU that is decremented until 0 at 60 Hz, with opcodes to read out and to
change its value. Since the video output is also running at 60 frames per second, it
makes sense to use the video timing generator to create that 60 Hz signal.

13.2.4 Keypad

The only input peripheral of the CHIP-8 is a 4 × 4 hexadecimal keypad in the
following layout:

type Key = Nybble

layout :: Matrix 4 4 Key
layout =

(0x1 :> 0x2 :> 0x3 :> 0xc :> Nil) :>
(0x4 :> 0x5 :> 0x6 :> 0xd :> Nil) :>
(0x7 :> 0x8 :> 0x9 :> 0xe :> Nil) :>
(0xa :> 0x0 :> 0xb :> 0xf :> Nil) :>
Nil

Note that this layout is different from the layout we used in previous chapters
like the calculator or the Brainfuck computer. Since we had full control over the
layout for those machines, we picked the one that is most common in real physical
keypad peripherals that are easy to connect to FPGA development boards. For
CHIP-8, however, we are bound to use the specified layout because a lot of games
use the keys according to their location; for example, using 4 for moving left and D
for moving right.

One interesting aspect of the keypad is that there are CHIP-8 opcodes both
for checking the immediate state (pressed or released) of individual keys and also
for waiting until the next key release. In real hardware, it is usually one or the
other: if the keyboard matrix is directly exposed to the CPU’s I/O pins, then it can
directly check key state but software has to implement some logic to detect events;
conversely, if the keyboard is connected via a serial interface (such as PS/2 or USB),
the raw inputs are events and it is up to the software to reconstruct the key states at
any given point in time.

Chapter 13 CHIP-8242

In our implementation, we will use our keypad matrix sweeper to expose the
immediate (debounced) key state to the CPU, and convert that into events when
needed with the help of a special 16-bit register to detect state changes from one
cycle to the next.

13.2.5 System overview

We can summarize the components and their connections in the diagram below. This
diagram is based not just on the CHIP-8 specification, but also on the implementation
design choices made so far:

• Font ROM and main RAM connected through address decoding logic
• Separate video buffer with dedicated connection to the CPU
• The keypad driver only provides the key states, not the key events

CPU

RAM

Font
ROM

memAddr

memRead

memWrite

Video
buffer

vidAddr

vidRead

vidWrite

Video

tick

VGA

Keypad
driver

keyState ROWS

COLS

The CPU pin names used in the diagram correspond to the CPUIn / CPUOut record
field names we will use throughout this chapter.

There is one oddity in this diagram: the video buffer’s connections. Our Clash
model of (synchronous) RAM allows one read and one write connection, but here
we have one write and two reads from two different addresses: one from the CPU
(driven by DRW instructions) and one from the video system (driven by the currently
drawn X and Y coordinates). We will explore two solutions to this:

• First, we will duplicate the video buffer and fan out the writes to both copies.
This way, the contents of both buffers will stay the same (the same writes
are applied at the same time to both), but two different cells can be read
concurrently by using different read addresses. This is a simple solution that
doesn’t require reengineering other parts of our design. Its drawback is that
it requires twice the amount of block RAM.

13.3 Instruction set 243

• For the second solution, we will resolve memory access contentions by pri-
oritization: if, in any given clock cycle, both the CPU and the video system
needs access to the video buffer, the video system will “win” and the CPU
will have to wait for its turn in another cycle.

The first solution is “local” in the sense that every other component can go on
with its life pretending to be the only one accessing the video buffer. In contrast, the
second solution requires changes to the CPU (to handle the situation where its video
buffer read request isn’t fulfilled) and the video system (to minimize video buffer
access to avoid starving the CPU). Since we have a total of 64× 32× 1 = 2048 bits, or
just 256 bytes, of video buffer data, it wouldn’t break the bank to store two copies of
it. However, since we are here not just to build a computer, but also to learn about
designing and building computers in general, we will explore the second approach
as well, extra complications be damned.

13.3 Instruction set

Now that we have a general idea of the various components and how they fit together,
let’s look at the CHIP-8 instruction set. This will fill in the details needed to start
moving from conceptual ideas to actual Clash code.

There are in total 35 instructions, each encoded in 16 bits. Below, we will use the
metavariables x and y for registers (each one nybble), and nn and nnn for two- and
three-nybble immediate values. The assembly syntax is based on Werner Stoop’s
open source CHIP-8 assembler7, where registers are written with a V prefix, so
register 0 is written as V0 and so on.

Below are only 34 descriptions; there is one pseudo-instruction SYS nnn (0nnn)
that jumps to the host machine code routine at address nnn. This was the escape
hatch to native RCA 1802 code for performance reasons or to access hardware not
exposed to the CHIP-8. Of course, modern CHIP-8 games don’t use this instruction;
like many other emulators, we are going to ignore it because the only way to
implement it would be to implement a full RCA 1802 and all the parts of the
COSMAC VIP.

13.3.1 Control flow

JP nnn (1nnn)

This is your usual unconditional jump instruction. The three-nybble nnn argument
is the absolute address to jump to.

7Available from https://github.com/wernsey/chip8/

https://github.com/wernsey/chip8/

Chapter 13 CHIP-8244

JP V0,nnn (Bnnn)

This variation of JMP adds the contents of the register V0 to the address before
jumping to it. This functionality is available for V0 only: there is no corresponding
instruction to take the offset from other registers.

CALL nnn (2nnn)

Similar to JMP, but pushes the program counter to the internal stack before jumping.
It is meant to be used in conjunction with RET.

RET (00EE)

The pair of CALL: pops the program counter from the internal stack, thereby return-
ing from the current subroutine.

SE Vx,nn (3xnn) and SNE Vx, nn (4xnn)

Skip the next instruction if the value of register x is equal (or not equal) to nn. There
are other versions of these instructions below, for different values to compare against
(see below); but in all cases, the only branching available is skipping one instruction.

SE Vx,Vy (5xy0) and SNE Vx, Vy (9xy0)

Similar to the previously described pair of instructions, these ones skip the next
instruction if the values of registers x and y are equal (or not equal) to each other.

13.3.2 Register manipulation

LD Vx,nn (6xnn)

Set the value of the x register to the 8-bit value nn.

ADD Vx,nn (7xnn)

Update the value of the x register by adding the 8-bit value nn. The result is simply
wrapped around in case of overflow.

MOV Vx,Vy (8xy0)

Copy the value of the y register to the x register

13.3 Instruction set 245

LD I,nnn (Annn)

Set the value of the pointer register (called I in mnemonics) to the given 12-bit value.

ADD I,Vx (Fx1E)

The 8-bit value of the x register is 0-extended to 12 bits, and added to the pointer
register.

LD [I],Vx (Fx55) and LD Vx, [I] (Fx65)

These two instructions copy multiple values between registers and RAM. The first
one, LD [I] Vx, writes the values of the first x registers to the memory locations
starting at the pointer register (so V0’s value is written the address stored in I, V1’s
value is written to the next address and so on). The second one, LD Vx, [I], reads
the memory locations starting from the pointer register and sets the first x register
accordingly.

In the original CHIP-8 specification, I is incremented after each register is saved
or restored, so that after these instructions run, the pointer points at the next
memory address. However, most second-wave CHIP-8 emulators didn’t implement
this (leaving the pointer register’s value unchanged), leading to some games that
outright break if the correct behavior is implemented.

13.3.3 Arithmetic

OR Vx,Vy (8xy1), AND Vx,Vy (8xy2), and XOR Vx,Vy (8xy3)

Set the x register to the result of applying the given binary Boolean function, bitwise,
to x and y.

ADD Vx,Vy (8xy4), SUB Vx,Vy (8xy5), and SUBN Vx,Vy (8xy7)

Set the x register to𝑉𝑥+𝑉𝑦 (ADD),𝑉𝑥−𝑉𝑦 (SUB) or𝑉𝑦−𝑉𝑥 (SUBN) using 8-bit arithmetic.
The VF register is also changed: for ADD, it is set to 1 if there is carry (i.e. if the result
doesn’t fit into 8 bits) and 0 otherwise. For SUB and SUBN, VF is set to 0 if there is
borrow (i.e. the result is negative) and 1 otherwise.

SHR Vx,Vy (8xy6) and SHL Vx,Vy (8xyE)

Set the x register to the right- or left-shifted value of the y register, and set VF to the
least (or most) significant bit of y.

Chapter 13 CHIP-8246

13.3.4 Special built-in functions

RND Vx,nn (Cxnn)

Generate a one-byte random number, and store it in the x register, using the one-byte
nn argument as a bitwise-AND mask. The details of this random number generator
is unspecified; we will implement it using a linear-feedback shift register.

BCD Vx (Fx33)

Store the binary-coded decimal representation of x’s value in memory. Since reg-
isters are 8-bit wide, its value is between 0 and 255, requiring three decimal digits.
These three digits are 0-extended to three full bytes and written to the three memory
locations starting at I.

13.3.5 Graphics

CLS (00E0)

Clear the screen, i.e. overwrite the video buffer’s contents with all pixels unset.

DRW Vx,Vy,n (Dxyn)

Draw an 8× 𝑛 sprite to the screen. The sprite data is taken from the 𝑛 bytes starting
at I; each byte describes one 8-pixel row (first byte being the topmost row). The
screen position to draw is taken from the contents of the x and y registers.

The sprite data is then combined with existing video buffer contents via bitwise
XOR. As a simple form of collision detection, the VF register is updated to 1 if this
causes any pixels to change from set to unset, and to 0 otherwise.

The registers x and y are 8-bit values, but the screen resolution is 64 × 32. Over-
hanging x and y values simply wrap around; however, sprite data doesn’t. For
example, drawing from 𝑥 = 253 means the sprite starts in column 61 and only the
first three columns are drawn.

HEX Vx (Fx29)

Change the pointer register’s value to an implementation-dependent value that can
be used as an 8 row tall sprite with DRW that is the hexadecimal digit stored in the
four lowest bits of register x. Since CHIP-8 programs start at address 0x200, it is
customary to use addresses below that to represent these digits.

13.3 Instruction set 247

13.3.6 Peripheral access

SKP Vx (Ex9E) and SKNP Vx (ExA1)

Take the lower four bits of register x’s value, and skip the next instruction if that key
on the keypad is pressed (or not pressed).

LD Vx,K (Fx0A)

Wait for a key to be pressed, and load its value to register x. Although not included
in the specification, the original implementation actually waited for the next key
release, so we’ll stick to that.

LD DT,Vx (Fx15) and LD Vx,DT (Fx07)

Set the delay timer’s value from register x and vice versa. The timer counts down
to 0 at 60 Hz. Note that polling (with LD Vx, DT) is the only way to use the timer,
there are no interrupts or callbacks available to run code when 0 is reached.

LD ST,Vx (Fx18)

Set the sound timer’s value from register x. The sound timer works exactly like the
delay timer, and turns on an external buzzer while its value is non-zero. Because
audio is outside of our scope here, we will implement this as a no-op. Not much is
lost, because there is no way to change the pitch, let alone the timbre, of the sound:
either it is on, or off.

13.3.7 Instruction decoding

We will use an algebraic datatype to represent the result of instruction decoding. The
datatype exploits some of the regularity between instructions which will help in the
implementation: for example, all binary arithmetic operations can be implemented
as simply updating x and VF with the value of a pure function applied on x and
y’s values; so the decoded representation of all these instructions will be the same,
parametrized by the arithmetic function to use. Similarly, we unify the “skip-if” and
the “skip-if-not” versions of branching instructions by storing the Boolean value that
indicates a skip.

First, we define some type synonyms for one, two, and three-nybble values. As
earlier, we pick Word8 instead of Unsigned 8 as the representation for bytes; they are
the same in the HDL output, but simulation performance is much better for Word8.

Chapter 13 CHIP-8248

type Nybble = Unsigned 4
type Byte = Word8
type Addr = Unsigned 12
type Reg = Nybble

Then, we map each opcode into a constructor of the datatype describing instruc-
tions:

data Instr
= Sys Addr -- SYS nnn
| Jump Addr -- JP nnn
| JumpPlusV0 Addr -- JP nnn, V0
| Call Addr -- CALL nnn
| Ret -- RET
| SkipEqImmIs Bool Reg Byte -- S[N]E Vx, nn
| SkipEqRegIs Bool Reg Reg -- S[N]E Vx, Vy
| LoadImm Reg Byte -- LD Vx, nn
| AddImm Reg Byte -- ADD Vx, nn
| StoreRegs Reg -- LD [I], Vx
| LoadRegs Reg -- LD Vx, [I]
| LoadPtr Addr -- LD I, nnn
| AddPtr Reg -- ADD I, Vx
| Arith Fun Reg Reg -- LD/ADD/SUB/SUBN/

-- AND/OR/XOR/SHL/SHR
| Randomize Reg Byte -- RND Vx, nn
| StoreBCD Reg -- BCD Vx
| ClearScreen -- CLS
| DrawSprite Reg Reg Nybble -- DRW Vx, Vy, nn
| LoadHex Reg -- HEX Vx
| SkipKeyIs Bool Reg -- SK[N]P Vx
| WaitKey Reg -- LD Vx, K
| LoadTimer Reg -- LD DT, Vx
| GetTimer Reg -- LD Vx, DT
| LoadSound Reg -- LD ST, Vx
deriving (Show)

Note that we mapped all binary register operations to Arith, including
MOV Vx, Vy. After all, it is no different than an arithmetic operation with the
identity function.
data Fun

= Mov -- MOV
| Or -- OR
| And -- AND
| XOr -- XOR

13.3 Instruction set 249

| Add -- ADD
| Subtract -- SUB
| ShiftRight -- SHR
| SubtractNeg -- SUBN
| ShiftLeft -- SHL
deriving (Show)

We write the instruction decoder as a pure function operating on two bytes. Of
course, since we access memory one byte at a time, the CPU will need to do some
housekeeping before it can use the decoder. We postpone that problem to the part
where we’ll be implementing the CPU, and just concentrate on mapping machine
code into the Instr datatype for now.

We convert the two bytes into four nybbles, but also take the second, third and
fourth nybbles into a 12-bit value. This is going to be useful because the machine
code for instructions with an immediate address argument (such as LD I, nnn)
always encode the address operand in the lower three nybbles.

decodeInstr :: Byte -> Byte -> Instr
decodeInstr hi lo = case nybbles of

-- See branches below
_ -> errorX $ printf "Unknown opcode: %02x %02x" hi lo

where
(n1, n2) = bitCoerce hi :: (Nybble, Nybble)
(n3, n4) = bitCoerce lo :: (Nybble, Nybble)
nybbles = (n1, n2, n3, n4)
addr = bitCoerce (n2, n3, n4)
imm = lo

There’s no way around it: the branches of the actual decoding is boring code
that we have to get through.

(0x0, 0x0, 0xe, 0x0) -> ClearScreen
(0x0, 0x0, 0xe, 0xe) -> Ret
(0x0, _, _, _) -> Sys addr
(0x1, _, _, _) -> Jump addr
(0x2, _, _, _) -> Call addr
(0x3, x, _, _) -> SkipEqImmIs True x imm
(0x4, x, _, _) -> SkipEqImmIs False x imm
(0x5, x, y, 0x0) -> SkipEqRegIs True x y
(0x6, x, _, _) -> LoadImm x imm
(0x7, x, _, _) -> AddImm x imm
(0x8, x, y, fun) -> Arith (decodeFun fun) x y

Chapter 13 CHIP-8250

(0x9, x, y, 0x0) -> SkipEqRegIs False x y
(0xa, _, _, _) -> LoadPtr addr
(0xb, _, _, _) -> JumpPlusV0 addr
(0xc, x, _, _) -> Randomize x imm
(0xd, x, y, n) -> DrawSprite x y n
(0xe, x, 0x9, 0xe) -> SkipKeyIs True x
(0xe, x, 0xa, 0x1) -> SkipKeyIs False x
(0xf, x, 0x0, 0x7) -> GetTimer x
(0xf, x, 0x0, 0xa) -> WaitKey x
(0xf, x, 0x1, 0x5) -> LoadTimer x
(0xf, x, 0x1, 0x8) -> LoadSound x
(0xf, x, 0x1, 0xe) -> AddPtr x
(0xf, x, 0x2, 0x9) -> LoadHex x
(0xf, x, 0x3, 0x3) -> StoreBCD x
(0xf, x, 0x5, 0x5) -> StoreRegs x
(0xf, x, 0x6, 0x5) -> LoadRegs x

The functions available for arithmetic operations are as follows:

decodeFun :: Nybble -> Fun
decodeFun 0x0 = Mov
decodeFun 0x1 = Or
decodeFun 0x2 = And
decodeFun 0x3 = XOr
decodeFun 0x4 = Add
decodeFun 0x5 = Subtract
decodeFun 0x6 = ShiftRight
decodeFun 0x7 = SubtractNeg
decodeFun 0xe = ShiftLeft
decodeFun n = errorX $ printf "Unknown arithmetic function: %x" n

13.4 Video

We design the video system as a separate component, in the first iteration with its
own memory for the video buffer. Its single input is going to be the signal containing
video buffer writes, coming from the CPU. The main output is the VGA signal ready
to be connected to the outside world. We also provide an auxiliary output of a 60
Hz trigger, simply because the video already runs at 60 frames per second, so we
can get that for free.

We want to display 64 × 32 pixels in a 640 × 480 VGA mode; we can do that
conversion by scaling and centering. If we wanted a full screen image, we could
scale horizontally by 10 and vertically by 15, but that would lead to very narrow

13.4 Video 251

pixels. Instead, we will scale by 10 in both directions using vertical centering,
achieving a letterbox effect.

We have to store 64 × 32 = 2048 bits for the pixels, but we need not store each
pixel in its own memory cell. If we do, then a single CLS instruction will necessarily
take 2048 cycles, since it needs to set each bit to 0 separately. Similarly, drawing an
8 × 𝑛 sprite involves 8 × 𝑛 roundtrips to the video buffer: both reads and writes are
needed to calculate the XOR.

At the other end of the spectrum, we could have a single 2048-bit cell. While this
would certainly speed up erasing (a single cycle!), it would be horribly unwieldy to
draw onto. By way of an example, suppose we use the DRW instruction to draw an
8× 9 sprite to (59, 27). After fetching the first byte of sprite data, containing the first
row, we would need to modify bits 1787, 1788, 1789, 1790 and 1791 (but not more,
since the rest of the sprite is out of bounds horizontally). Then in the next cycle,
the next sprite data byte is used to modify bits 1851 to 1855, and so on, until we get
to the fifth row of bits 2043 to 2047, and then ignore the remaining four rows since
they are out of bounds vertically.

Instead of either extreme, we will go with a memory layout that helps, rather
than hinders, the implementation of the DRW instruction. Each row is 64 pixels – we
can store that as a 64-bit-wide RAM containing 32 cells. The addressing scheme of
the video buffer becomes identical to the logical vertical addressing of pixels, which
means we can use Y coordinates as-is as addresses. Since sprite data is stored in
bytes row by row, it is natural to also update the video buffer row by row; and we
can simply stop as soon as an internal counter hits the maximum address to detect
vertical overhang.

To draw the sprite to the correct location, we can extend the 8-bit sprite row data
into a 64-bit value, and shift it to the right by 𝑋. By using shift instead of rotate, we
take care of discarding horizontally overhanging pixels. The resulting 64-bit value
is then ready to be XOR-combined with the 64 bits currently in the given row’s cell.

This layout is also easy to use from the video signal generator, because we can
connect the Y coordinate directly to the video buffer’s address line. As for horizontal
addressing, we can take the (63 − 𝑋)𝑡ℎ bit of the 64-bit read value (since bits are
indexed right to left).

Even better, since the electron beam is scanning the screen line by line, at the
start of each line we can read the 64-bit value into a 64-bit register, and keep shifting
out its most significant bit. This means we only need to fetch from the video buffer
once per line, which will become beneficial when we revisit our design to share the
same video RAM between the CPU and the video signal generator.

Chapter 13 CHIP-8252

10110101Main RAM

10110101 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Extend to 64 bits

00000000 00000000 00001011 01010000 00000000 00000000 00000000 00000000

Shift right by 𝑋

11010111 00110011 00001000 00110001 10110100 00010001 00010010 11010101

XOR with current value

11010111 00110011 00000011 01100001 10110100 00010001 00010010 11010101Video RAM

XOR with new value

Drawing a sprite row into video RAM

13.4.1 Interface

Taking all these ideas into account, we are now ready to start writing the video
generator component of our CHIP-8 computer. We use a fixed 25 MHz clock for this
component since it needs to match the chosen VGA mode’s pixel clock frequency.
The other components will be, as usual, polymorphic in the clock; by wiring them
together in topEntity, they will all get instantiated to this 25 MHz clock.

-- | 25 MHz clock, needed for the VGA mode we use.
createDomain vSystem{vName="Dom25", vPeriod = hzToPeriod 25_175_000}

type VidX = Unsigned 6
type VidY = Unsigned 5
type VidRow = Word64

video
:: (HiddenClockResetEnable Dom25)
=> Signal Dom25 (Maybe (VidY, VidRow))
-> (Signal Dom25 Bool, VGAOut Dom25 8 8 8)

The only input to the video subsystem is the signal carrying video buffer writes.
Since we have decided to duplicate the video memory for our first version, both this
component and the main logic board will maintain their own copies of the video
buffer in a small 32×64 bit RAM, taking in write requests forked off from the CPU’s

13.4 Video 253

output. The two outputs of the video circuitry are the 60 Hz tick (to be connected
to the CPU) and the VGA output to the outside world.

13.4.2 Implementation

We start with laying the foundations: generating the VGA sync signals, detecting
the start of the vertical blanking area, and converting the physical 640 × 480 video
coordinates to 64 × 32 by scaling and centering. The only concern of the rest of the
circuit will be calculating the rgb value for the currently drawn pixel.

video write = (frameEnd, vgaOut vgaSync rgb)
where
VGADriver{..} = vgaDriver vga640x480at60
frameEnd = isFalling False (isJust <$> vgaY)

vgaX' = fst . scale @64 (SNat @10) $ vgaX
vgaY' = fst . scale @32 (SNat @10) . center $ vgaY

Since the CHIP-8 is monochrome, it would make no sense to store a full 24-bit
RGB value for each pixel. Instead, we will use a palette: a mapping from a small
number of color selectors to the definition of those colors. In our case, the palette
consists of only two colors, so we will use a Bit as the color selector, and choose
a nice amber glow for set pixels, to evoke the look of old monochrome displays.
Also, since the scaled-up vertical resolution is smaller than the physical one, we
have pixels which are “not visible” virtually, but are actually on the screen. We
will compute the current pixel as a Maybe Bit signal, and draw a border in a third
color for the Nothing case. We could simply draw the border using the unset color
(i.e. black), but one advantage of having an explicit border color is as a kind of
debugging device, since it allows us to see where both vgaX' and vgaY' are Just
values.

rgb = maybe border palette <$> pixel

border = (0x30, 0x30, 0x50)

palette 0 = (0x00, 0x00, 0x00)
palette 1 = (0xff, 0xcc, 0x33)

Now we are getting to the meat of it: computing the Maybe Bit value of the
currently drawn logical pixel. We do this by maintaining the remainder of the
current row as a 64-bit value, shifting it to the left every time the virtual X coordinate
changes. From this, we can easily compute the current pixel (if visible) by taking
the rightmost (i.e. the most significant) bit:

Chapter 13 CHIP-8254

pixel = enable visible $ msb <$> row
visible = isJust <$> vgaX' .&&. isJust <$> vgaY'

This takes care of drawing a single row. Drawing the current row requires
loading into row from memory at each lineStart, using the Y coordinate as the
address:

address = maybe 0 bitCoerce <$> vgaY'
load = blockRam1 NoClearOnReset (SNat @32) 0 address write

lineStart = isRising False $ isJust <$> vgaX'
newX = changed Nothing vgaX'

row = register 0 $
mux lineStart load $
mux newX ((`shiftL` 1) <$> row) $
row

This is not the final version of the video pattern generator: there is a subtle bug
lurking in there, and there’s also room to improve in preparation of sharing the
video buffer with the CPU. But before we move on, let’s write a small topEntity for
testing purposes, that writes a checkerboard pattern into video RAM, drawing one
row per second.

topEntity
:: "CLK_25MHZ" ::: Clock Dom25
-> "RESET" ::: Reset Dom25
-> "VGA" ::: VGAOut Dom25 8 8 8

topEntity = withEnableGen board
where
board = vga
where

(frameEnd, vga) = video write
timer = riseEveryWhen (SNat 60) frameEnd
ptr = regEn 0 timer $ ptr + 1
val = regEn pattern timer $ complement <$> val
write = Just <$> ((,) <$> ptr <*> val)
pattern = 0xaaaa_aaaa_aaaa_aaaa

The 64-bit constant is chosen because the binary representation of 0xaa is
0b10101010, so by putting 8 copies of it next to each other, we get a full-screen-
width checkerboard pattern. Its complement is, of course, 0b01010101.

“One row per second” is achieved by counting to 60 frames, using a version of
riseEvery that takes an explicit trigger signal instead of counting every cycle:

13.4 Video 255

riseEveryWhen
:: forall n dom. (HiddenClockResetEnable dom, KnownNat n)
=> SNat n
-> Signal dom Bool
-> Signal dom Bool

riseEveryWhen n trigger = isRising False $ cnt .==. pure maxBound
where
cnt = regEn (0 :: Index n) trigger (nextIdx <$> cnt)

If we try out this version on real hardware, it is entirely possible that we’ll come
to the conclusion that everything is all right: after all, the pattern does appear row
by row, second by second. However, if we look real closely at the leftmost edge of
the screen, we will notice that the first column of physical pixels in the visible area
is black, so the first virtual pixel is shifted by one physical pixel. Conversely, the last
physical column of the last virtual pixel is cut off: it has to be, since we are trying to
draw 10 × 64 pixels into a 640 pixel area but skipping the first column.

1 px 10 px 10 px

10 px 9 px

(2) Right-side edge
(last pixels of a line)

(1) Left-side edge
(first pixels of a line)

What is going on here?

13.4.3 Timing problems

When it comes to drawing on a screen, time and space is unified like an Einsteinian
gedankenexperiment. The virtual pixels are off by one column because the correct
pixel data is computed one pixel, i.e. one cycle, too late.

We can solve the immediate problem by thinking about the relationship between
row and pixel. Let’s look at their definitions side by side:

Chapter 13 CHIP-8256

row = register 0 $
mux lineStart load $
mux newX ((`shiftL` 1) <$> row) $
row

pixel = enable visible $ msb <$> row

At the start of each line, the new value of row is the line we load from RAM.
However, pixel is computed from the old value, since the Signal value of a register
is defined to be its value as it is and the beginning of the cycle.

We have already seen a solution to a similar problem when writing video coor-
dinate transformers, and indeed we can do the same here: instead of referring to
row in the definition of pixel, we split row into a separate signal row' holding the
new value, and use that both to update row and to define pixel:

row = register 0 row'

row' =
mux lineStart load $
mux newX ((`shiftL` 1) <$> row) $
row

pixel = enable visible $ msb <$> row'

And so this version avoids the empty first column: a fact we can either convince
ourselves by thinking about it, or observe by testing.

Let’s change our implementation a bit, with an eye towards decreasing memory
access. Since we plan to eventually share a single video RAM between the video
generator and the CPU, one local improvement we can make is to change the address
to a Maybe VidY. The idea here is that with this small change, we can prepare for later
versions to service CPU-originating read requests only when the video generator’s
request address is Nothing, since we can’t ask the CRT’s electron beam to take five
while the CPU does its thing.

That should be an easy change: we can simply force address to be always Nothing,
except one cycle at the start of each line:

address = bitCoerce <$> mux lineStart vgaY' (pure Nothing)
load = blockRam1 NoClearOnReset (SNat @32) 0 (address .<| 0) write

This pattern of adding an extra constraint on a Maybe-valued signal will come up
in other contexts as well, so it makes sense to add a combinator for it:

13.4 Video 257

guardA :: (Applicative f, Alternative m) => f Bool -> f (m a) -> f (m a)
guardA en x = mux en x (pure empty)

The new version of address is thus:

address = bitCoerce <$> guardA lineStart vgaY'

This also allows us to change row' slightly to avoid duplicating the decision logic
to replace its value: we want to load from RAM if and only if address is set.

row' =
mux (isJust <$> address) load $
mux newX ((`shiftL` 1) <$> row) $
row

We synthesize this new version, load it on the development board, hook it up to
a screen, and instead of the checkerboard pattern, we see this:

The root of the problem is the read from the blockRam1 component. Since it is
a synchronous RAM component, when the address changes, it takes until the next
cycle to load the new value. By the time we have this new value ready, address is
already Nothing. Conversely, in the cycle when address is set, load still holds the
result of reading from address 0 (since that is the address we fall back to). The end
result of this is that whenever isJust <$> address occurs, load will always contain
the value of cell #0, i.e. the first row. That is why instead of the checkerboard pattern,
we see just vertical bars: it is the first line, repeated for each virtual Y coordinate.

So if load is ready one cycle later than address, then we can fix this by replacing
row with load one cycle after the address has been set:

row' =
mux (register False $ isJust <$> address) load $
mux newX ((`shiftL` 1) <$> row) $
row

Chapter 13 CHIP-8258

Let’s try this version out:

1 px 9 px 10 px

10 px 10 px

(2) Right-side edge
(last pixels of a line)

(1) Left-side edge
(first pixels of a line)

Oh no, not this again! Are we going in circles? Not exactly. Unlike the previous
version with the off-by-one column problem, this new one is not translated by one
column – it is missing it. We can see this by measuring the sizes of the virtual pixels:
the first one is 9 pixels wide, whereas all the others are 10. And this makes sense:
when we changed the definition of row', we have delayed the start of each line by
one cycle, but the subsequent newX trigger will happen just the same as before. Let’s
delay newX as well, if nothing else, then just to get back to a situation we were able
to solve once before:

row' =
mux (register False $ isJust <$> address) load $
mux (register False newX) ((`shiftL` 1) <$> row) $
row

Just as expected, this puts us firmly back on square one, with the whole image
being off by one physical pixel:

13.4 Video 259

But what good is getting back to a previously encountered problem, if our
previous solution isn’t applicable? And it isn’t, because we can’t carve out a version
of row' that wouldn’t be late: due to the blockRam1 delay, the result is simply not
ready on time.

One thing we could try to do, of course, is to compute vgaY' a bit in advance,
and fire lineStart early. This is tricky because there is no output of the VGA driver
that would tell us “a new line is just about ready to start”. Maybe we could make
our own “shadow” VGA driver that would count the cycles after sync signal events
to figure out how far we are from the next non-blanking portion of the screen?

Instead, we are going to re-frame the problem: I’m not late, everyone else is too
early! Like a character in a Chaplin movie that sets the factory clock late to mislead
the boss, we will time-shift the VGA sync signals, so that the monitor’s electron
beam will be drawing the pixel that was described in the previous cycle’s vgaX and
vgaY values.

video write = (frameEnd, vgaOut (delayVGASync vgaSync) rgb)

We shift the sync signals without a worry for their extra value: not that we’d
know if it should be high or low8, and not that we care either: whatever happens
on the first pixel clock cycle, the screen will synchronize to the signals by the end of
the first frame in the latest.

delayVGASync
:: (HiddenClockResetEnable dom) => VGASync dom -> VGASync dom

delayVGASync VGASync{..} = VGASync
{ vgaHSync = register undefined vgaHSync
, vgaVSync = register undefined vgaVSync
, vgaDE = register False vgaDE
}

8If we wanted to extend with the correct values real bad, we could think about tracking the sync
polarities in type indices for VGASync, but the extra complication is not worth it.

Chapter 13 CHIP-8260

Now with this latest version, the virtual pixels start at the right physical column,
the first pixels are the right size. . . but disaster strikes in the last column, where
instead of the rightmost edge of the virtual pixels, we can see the border:

10 px 10 px

10 px 9 px 1 px

(2) Right-side edge
(last pixels of a line)

(1) Left-side edge
(first pixels of a line)

This game of whack-a-mole is getting out of hand!

13.4.4 Tracking signal delay

It is not impossible, but also not trivial to figure out what is wrong: the visible signal
is computed from undelayed inputs, so it now becomes False one cycle too early.
Accordingly, we fix it by delaying it in the definition of pixel so that it is in sync
with row':

pixel = enable (register False visible) $ msb <$> row'

This finally gives us a video signal generator with the correct output. Let’s look
at the code in its entirety with all the accumulated changes applied:

video
:: (HiddenClockResetEnable Dom25)
=> Signal Dom25 (Maybe (VidY, VidRow))
-> (Signal Dom25 Bool, VGAOut Dom25 8 8 8)

video write = (frameEnd, vgaOut (delayVGASync vgaSync) rgb)
where
VGADriver{..} = vgaDriver vga640x480at60
frameEnd = isFalling False (isJust <$> vgaY)

13.4 Video 261

vgaX' = fst . scale @64 (SNat @10) vgaX
vgaY' = fst . scale @32 (SNat @10) . center $ vgaY

rgb = maybe border palette <$> pixel

border = (0x30, 0x30, 0x50)

palette 0 = (0x00, 0x00, 0x00)
palette 1 = (0xff, 0xcc, 0x33)

pixel = enable (register False visible) $ msb <$> row'
visible = isJust <$> vgaX' .&&. isJust <$> vgaY'

address = bitCoerce <$> guardA lineStart vgaY'
load = blockRam1 NoClearOnReset (SNat @32) 0 (address .<| 0) write

lineStart = isRising False $ (isJust <$> vgaX')
newX = changed Nothing vgaX'

row = register 0 row'
row' =

mux (register False $ isJust <$> address) load $
mux (register False newX) ((`shiftL` 1) <$> row) $
row

We can now get rid of row' and use row directly, by adding one more cycle of
delay to everything else:

video
:: (HiddenClockResetEnable Dom25)
=> Signal Dom25 (Maybe (VidY, VidRow))
-> (Signal Dom25 Bool, VGAOut Dom25 8 8 8)

video write = (frameEnd, vgaOut (delayVGASync . delayVGASync $ vgaSync)
rgb)

where
pixel = enable (register False . register False $ visible) $ msb <$>
row

row = register 0 $
mux (register False $ isJust <$> address) load $
mux (register False newX) ((`shiftL` 1) <$> row) $
row

-- Rest unchanged

Chapter 13 CHIP-8262

Looking at the final code, there are two problems with our approach so far:

• There is no way we could have written the final code on our first try. We had
to keep synthesizing onto hardware and looking at the resulting image, then
thinking a lot to come up with an explanation.

• It is very fragile: if we change anything, we have to do the above process again.

The alternative is to let the computer do what it does best: compute. In this case,
computing the signal delays and letting us know if things are not in sync.

For this use case, Clash’s standard library provides the DSignal type for delayed
signals, or, more accurately, signals with tracked delay. The type DSignal dom d a is the
same as Signal dom a, but marked to be delayed by d clock cycles, compared to the
baseline of DSignal dom 0 a. It is still an applicative functor, so combining signals
with the same delay is just as straightforward as non-delayed signals. DSignal only
tracks delay, it doesn’t model the source of delay or what delay even means; that is
up to us as users.

For our current problem, we will use DSignal dom d a to mean that something
is computed based on the pixel coordinates d cycles ago. We will have two sources
of delay: the block RAM read, and the shift register containing the current row.
For the first one, we can create a function that transforms non-delay-tracked RAM
elements into delay-tracked ones:

delayedRam
:: (HiddenClockResetEnable dom)
=> (forall dom'. (HiddenClockResetEnable dom')

=> Signal dom' addr
-> Signal dom' wr
-> Signal dom' a)

-> DSignal dom d addr
-> DSignal dom d wr
-> DSignal dom (d + 1) a

delayedRam syncRam addr write =
unsafeFromSignal $ syncRam (toSignal addr) (toSignal write)

Here, we use the Clash primitives toSignal and unsafeFromSignal to convert
from/to DSignal. toSignal simply forgets the delay information, turning any
DSignal dom d a into a Signal dom a. Its dual is fromSignal, which creates a
DSignal dom 0 a. Here, we use unsafeFromSignal because we want to state, by
fiat, that the resulting signal has a non-zero delay. It is unsafe in the sense that it
is up to us, the programmer, to ensure that the delay in the type corresponds to
the signal delay of the underlying circuit. In this case, since we know that the var-
ious synchronous RAM primitives like blockRam1 produce a result one cycle after

13.4 Video 263

changing the address line, we use unsafeFromSignal and set the correct delay in
the type annotation to one more than the input’s delay. We use a rank-2 type for
the RAM primitive to make sure we aren’t passed a circuit which has other signal
dependencies that could influence the delay.

For registers, we can make a function that takes care of tying the knot, by
computing a 𝑑-delayed value from the current value (and possibly other 𝑑-delayed
signals), and using it as the new value that will be available from the next cycle,
delayed by 𝑑 + 1 cycles in total:

delayedRegister
:: (NFDataX a, HiddenClockResetEnable dom)
=> a
-> (DSignal dom d a -> DSignal dom d a)
-> DSignal dom (d + 1) a

delayedRegister initial feedback = r
where
r = unsafeFromSignal $ register initial $ toSignal new
old = antiDelay (SNat @1) r
new = feedback old

Here, antiDelay is another unsafe primitive operation on DSignal: this one
changes the delay tag from DSignal dom (d + k) to DSignal dom d. Just like
toSignal, fromSignal or unsafeFromSignal, it has no operational effect; the only
change is in the type-level delay index. Here, we use it because our register’s value
r is delayed by 𝑑 + 1 according to the type signature of delayedRegister, but the
whole point of tying the knot ourselves instead of outside is to apply the feedback
function on the start-of-cycle value of r.

Another handy utility function is one that lifts a non-delaying signal function to
the world of DSignal; we will need this when using the signal functions isRising
and changed with DSignal-typed arguments.

liftD
:: (HiddenClockResetEnable dom)
=> (forall dom'. (HiddenClockResetEnable dom') =>

Signal dom' a -> Signal dom' b)
-> DSignal dom d a -> DSignal dom d b

liftD f = unsafeFromSignal . f . toSignal

Armed with these definitions, the plan is to rewrite the video circuit to use
DSignals. To the outside world, it should still look like a circuit taking a Signal input
and producing VGA output (note that the type signature below is unchanged); but
internally, it will use the type-level delay information to offset the VGA sync signals
by just the right number of cycles so that they match up with the RGB signals. So

Chapter 13 CHIP-8264

the type signature of video will not change, but instead of using delayVGASync some
arbitrary number of times, we make a version that is type-directed by the delay tag:

delayVGA
:: (KnownNat d, KnownNat r, KnownNat g, KnownNat b)
=> (HiddenClockResetEnable dom)
=> VGASync dom
-> DSignal dom d (Unsigned r, Unsigned g, Unsigned b)
-> VGAOut dom r g b

video
:: (HiddenClockResetEnable Dom25)
=> Signal Dom25 (Maybe (VidY, VidRow))
-> (Signal Dom25 Bool, VGAOut Dom25 8 8 8)

video write = (frameEnd, delayVGA vgaSync rgb)
where
-- See other changes below

The key to delayVGA is that it takes a delay-tracked RGB signal, and produces a
full VGAOut which has the sync and the RGB signals matched, and then packaged
up. If we didn’t do the packaging, and instead wrote something like this:

delayVGA
:: (HiddenClockResetEnable dom)
=> VGASync dom
-> DSignal dom d rgb
-> VGASync dom

This API would run the risk of passing a different RGB signal to delayVGA as to
the eventual vgaOut call, i.e. something like the following where rgb1 and rgb2 are
unrelated and could have different delays:

vga = vgaOut (delayVGA vgaSync rgb1) (toSignal rgb2)

The implementation of delayVGA is quite straightforward: we transform the
sync signals by delaying them the appropriate amount, and package them up with
toSignal rgb which removes the delay tag from rgb:

delayVGA VGASync{..} rgb = vgaOut vgaSync' (toSignal rgb)
where
vgaSync' = VGASync

{ vgaHSync = matchDelay rgb undefined vgaHSync
, vgaVSync = matchDelay rgb undefined vgaVSync
, vgaDE = matchDelay rgb False vgaDE
}

13.4 Video 265

The workhorse function of delayVGA is matchDelay which takes a reference
DSignalwhose contents is irrelevant, and prepends the right amount of initial values
x0. We do this with the Clash primitive delayI, which translates a DSignal dom d0
to a DSignal dom (d0 + k): operationally, delayI x0 is equivalent to register x0
iterated 𝑘 times. In our case, we will start with the result of fromSignal, so d = 0;
the type of our reference delayed signal forces 𝑘 = 𝑑 via (ref *>).

delayI :: _ => a -> DSignal dom d a -> DSignal dom (d + k) a

matchDelay
:: (KnownNat d, NFDataX a, HiddenClockResetEnable dom)
=> DSignal dom d any
-> a
-> Signal dom a
-> Signal dom a

matchDelay ref x0 = toSignal . (ref *>) . delayI x0 . fromSignal

Let’s evaluate what all this extra machinery gets us, by rewriting our video circuit
to use DSignal, but without applying any of the hard-earned delay consistency bug
fixes.

video write = (frameEnd, delayVGA vgaSync rgb)
where
VGADriver{..} = vgaDriver vga640x480at60
frameEnd = isFalling False (isJust <$> vgaY)

vgaX' = fromSignal $ fst . scale @64 (SNat @10) $ vgaX
vgaY' = fromSignal $ fst . scale @32 (SNat @10) . center $ vgaY

rgb = maybe border palette <$> pixel

border = (0x30, 0x30, 0x50)

palette 0 = (0x00, 0x00, 0x00)
palette 1 = (0xff, 0xcc, 0x33)

pixel = enable visible $ msb <$> row
visible = isJust <$> vgaX' .&&. isJust <$> vgaY'

address = bitCoerce <$> guardA lineStart vgaY'
load = delayedRam (blockRam1 NoClearOnReset (SNat @32) 0)

(address .<| 0) (fromSignal write)

Chapter 13 CHIP-8266

lineStart = liftD (isRising False) $ (isJust <$> vgaX')
newX = liftD (changed Nothing) vgaX'

row = delayedRegister 0 $ \row ->
mux (isJust <$> address) load $
mux newX ((`shiftL` 1) <$> row) $
row

Compared to the non-DSignal version, the changes are:

• vgaX' and vgaY' are converted using fromSignal. This is what kickstarts the
whole refactoring: since these signals are now delay-tagged, everything else
up to pixel is now delay-tagged as well.

• We use liftD to lift into DSignal the stateful signal functions isRising and
changed. We use liftD for these because both of these return results that are
valid in the same cycle as their inputs (for example, isRising is True in the
same cycle as when its argument signal first becomes True).

• The video buffer access and the row register are the two sources of signal delay
we are modeling, so these use unsafeFromSignal under the hood.

If we try to compile this version, we get a type error:

CHIP8/Video.hs:56:34: error:
• Couldn't match type ‘’1 with ‘’0
Expected type: DSignal Dom25 0 VidRow

Actual type: DSignal Dom25 (0 + 1) VidRow
• In the second argument of ‘’mux, namely ‘’load
In the expression: mux (isJust <$> address) load

And boom goes the dynamite: the type checker has identified the bug that
we try to load the new row value one cycle too late compared to the condition
of isJust <$> address. In the non-DSignal version, this compiled, and we had a
nasty timing bug on our hands, without any indication of where to find it and then
how to fix it. But here, the type checker helpfully points out that we need to shift
isJust <$> address by one cycle so that its value will be consistent with when load
is ready.

This allows us to fix this problem by changing the definition of row:

row = delayedRegister 0 $ \row ->
mux (delayI False $ isJust <$> address) load $
mux newX ((`shiftL` 1) <$> row) $
row

13.5 CPU 267

Further type errors gradually guide us first towards adding a delayI call to the
other condition in row’s definition (since newX is not delayed but row is, since it
is loaded from synchronous RAM), and then to the discrepancy between visible
(with zero delay) and msb <$> row (with delay of two cycles). Fixing these, we get a
version that typechecks, and works exactly as we’d like. In the following listing of
the final code, * marks the changes prompted by the type checker:

video write = (frameEnd, delayVGA vgaSync rgb)
where
VGADriver{..} = vgaDriver vga640x480at60
frameEnd = isFalling False (isJust <$> vgaY)

vgaX' = fromSignal $ fst . scale @64 (SNat @10) $ vgaX
vgaY' = fromSignal $ fst . scale @32 (SNat @10) . center $ vgaY

rgb = maybe border palette <$> pixel

border = (0x30, 0x30, 0x50)

palette 0 = (0x00, 0x00, 0x00)
palette 1 = (0xff, 0xcc, 0x33)

pixel = enable (delayI False visible) $ msb <$> row -- *
visible = isJust <$> vgaX' .&&. isJust <$> vgaY'

address = bitCoerce <$> guardA lineStart vgaY'
load = delayedRam (blockRam1 NoClearOnReset (SNat @32) 0)

(address .<| 0) (fromSignal write)

lineStart = liftD (isRising False) $ (isJust <$> vgaX')
newX = liftD (changed Nothing) vgaX'

row = delayedRegister 0 $ \row ->
mux (delayI False $ isJust <$> address) load $ -- *
mux (delayI False newX) ((`shiftL` 1) <$> row) $ -- *
row

13.5 CPU

We will use the same monadic approach to writing our CHIP-8 processor that we
developed for the Brainfuck CPU. We start by defining the interface according to
the system overview section:

Chapter 13 CHIP-8268

type KeypadState = Vec 16 Bool

declareBareB [d|
data CPUIn = CPUIn

{ memRead :: Byte
, vidRead :: VidRow
, keyState :: KeypadState
, tick :: Bool
} |]

declareBareB [d|
data CPUOut = CPUOut

{ _memAddr :: Addr
, _memWrite :: Maybe Byte
, _vidAddr :: VidY
, _vidWrite :: Maybe VidRow
} |]

makeLenses ''CPUOut

We don’t yet have a clear picture of what the CPU registers are going to be,
but even a cursory reading of the instruction set suggests that at the very least
we are going to need a 12-bit program counter, 16 general purpose registers, one
12-bit pointer register, and a stack of addresses. The original specification says the
CALL / RET stack to have enough space to store 12 entries, but because many later
implementations had more stack space, we will double that to ensure compatibility
with more modern programs.

data CPUState = CPUState
{ _pc, _ptr :: !Addr
, _registers :: !(Vec 16 Byte)
, _stack :: !(Stack 24 Addr)
}
deriving (Show, Generic, NFDataX)

initState :: CPUState
initState = CPUState

{ _pc = 0x200
, _ptr = 0x000
, _registers = repeat 0
, _stack = Stack (repeat 0) 0
}

We are using strict fields in CPUState to improve simulation performance and
avoid inconsistent speed when taking one CPU step; they make no difference when

13.5 CPU 269

synthesizing.
Because the CHIP-8 is a von Neumann architecture machine, it is natural to

assign by default the program counter to the memory address:

defaultOut :: CPUState -> Pure CPUOut
defaultOut CPUState{..} = CPUOut
{ _memAddr = _pc
, _memWrite = Nothing
, _vidAddr = 0
, _vidWrite = Nothing
}

One big difference compared to the Brainfuck CPU is that the CHIP-8 has instruc-
tions that are larger than the smallest addressable memory: addresses are per byte,
but instructions take up 16 bits. This means we will have to fetch instructions in
two cycles: first the first (high) byte, then the second (low) byte. So let’s add a Phase
ADT to keep track of what we are supposed to be doing in a given cycle. Just like
CPUState, the below is not the final definition; we will add more phases as needed,
while implementing the various instructions. We’ll also add an Init phase because
we remember from the Brainfuck CPU that we need to set the address output in a
full cycle before fetching the first valid byte.

data Phase
= Init
| Fetch
| Exec Byte
deriving (Show, Generic, NFDataX)

data CPUState = CPUState
{ _phase :: !Phase
...
}

initState = CPUState
{ phase = Init
...
}

We only store one Byte (the high one) in Exec because the low one will be just
ready on the data bus. So now we know roughly the shape of implementing a single
cycle of our CPU, going from Init to Fetch, from Fetch to Exec, and then from Exec
back to Fetch for the next instruction:

Chapter 13 CHIP-8270

type CPU = CPUM CPUState CPUOut

step :: Pure CPUIn -> CPU ()
step CPUIn{..} = do

use phase >>= \case
Init -> phase .= Fetch
Fetch -> do

pc += 1
phase .= Exec memRead

Exec hi -> do
let lo = memRead
pc += 1
phase .= Fetch
case decodeInstr hi lo of

-- TODO: Implement instructions
instr -> errorX $ show instr

-- Other phases to be added as needed
where
-- Various utility definitions described below

13.5.1 Simple register-changing operations

Now that we have a structure, we can start filling it in for the implementation of the
simpler instructions, by adding branches to the pattern matching on the decoded
instruction. Perhaps the simplest of them all is Jump, which overwrites the program
counter as its only effect:

Jump addr -> do
pc .= addr

And that’s all we need to do, because by default, we go to the Fetch phase next
(since we set phase to Fetch before branching on the decoded instruction). Since we
use the value of the pc register as the default memory address output, by changing
pc here we ensure that the Fetch in the next cycle will get the opcode from the
correct address.

Let’s fill in everything that is as straightforward as Jump. For example, LoadPtr
is exactly the same as a jump, the only difference is the target register being ptr, not
pc:

LoadPtr addr -> do
ptr .= addr

13.5 CPU 271

A lot of the instructions index into the 16-element general purpose register array.
Let’s add two helper functions for that, and then we can implement everything
involving direct register access.

setReg :: Reg -> Byte -> CPU ()
setReg reg val = registers %= replace reg val

getReg :: Reg -> CPU Byte
getReg reg = uses registers (!! reg)

In the rest of this chapter, in code we will refer to the register names as
vx, vy :: Reg and their current values as x, y :: Byte.

LoadImm vx imm -> do
setReg vx imm

AddImm vx imm -> do
x <- getReg vx
setReg regX (x + imm)

JumpPlusV0 addr -> do
offset <- getReg 0
pc .= addr + fromIntegral offset

AddPtr vx -> do
x <- getReg vx
ptr += fromIntegral x

To implement the conditional branching instructions, we make the observation
that since one instruction is 2 bytes, and we have already added 1 to pc before the
branch, we can skip an instruction by simply adding 2 more to the program counter:

skip :: CPU ()
skip = pc += 2

We have picked the instruction representation so that both SkipEqImmIs b and
SkipEqRegIs b are supposed to skip if the result of the given comparison is b:

SkipEqImmIs b vx imm -> do
x <- getReg vx
when ((x == imm) == b) skip

SkipEqRegIs b vx vy -> do
x <- getReg vx
y <- getReg vy
when ((x == y) == b) skip

Chapter 13 CHIP-8272

Two instructions Ret and Call require access to the internal stack, by respectively
pushing and popping the current program counter. The code is simplified a lot by
reusing the Stack implementation from our Brainfuck CPU:

Ret -> do
(pc', stack') <- pop <$> use stack
stack .= stack'
pc .= pc'

Call addr -> do
pc0 <- use pc
stack %= push pc0
pc .= addr

The remaining instructions can be classified into the following groups:

• Various 8-bit arithmetic functions via Arith that take arguments from registers
and write the result back into a register.

• Instructions that deal directly with peripherals and special-purpose registers:
WaitKey and SkipKeyIs for the keypad, Randomize for the built-in pseudo-
random number generator, and GetTimer, LoadTimer and LoadSound for the
timers.

• Graphic instructions: ClearScreen, DrawSprite, LoadHex.

• Instructions that deal with memory access: StoreRegs, LoadRegs and StoreBCD.
The latter might seem like an arithmetic instruction, but recall that instead of
writing its result to a register (where it wouldn’t fit), it stores it directly in three
consecutive bytes at the address stored in the ptr register.

Actually, there is one more instruction that we missed: Sys. However, as ex-
plained earlier, we are not going to support it:

Sys n -> do
errorX "Unimplemented: Sys"

13.5.2 Arithmetic instructions

In our representation of instructions, we use a single Arith constructor for all of the
bitwise logic instructions OR, AND, and XOR, the arithmetic instructions ADD, SUB, and
SUBN, and the shifting operations SHR and SHL. This is because the effect of all of
these instructions is the same: take the current value of the two specified registers,
apply some binary function on that, and then write the result back into the first
register; additionally, the non-bitwise instructions also update the value of the VF

13.5 CPU 273

register. Because the effects are the same, it makes sense to handle them in one
single branch.

This unification of all Boolean logic and arithmetic instructions is quite usual in
hardware CPUs as well, because it allows using one set of components for all the
non-function-specific housekeeping. In our Clash code, this will manifest itself as a
single step branch for the Arith case, leaving the actual computation to a separate
pure function:

Arith fun fx vy -> do
x <- getReg vx
y <- getReg vy
let (flag, x') = alu fun x y
setReg vx x'
traverse_ setFlag flag

This uses a utility function to write a one-bit flag result to the register VF:

setFlag :: Bit -> CPU ()
setFlag = setReg 0xf . fromIntegral

The computation itself takes place in a pure function that returns the new value
of the first register, and, if the given function changes VF, the flag:

alu :: Fun -> Byte -> Byte -> (Maybe Bit, Byte)

The manifestation of that pure function in a hardware CPU is traditionally called
the Arithmetic Logic Unit, or ALU for short (hence the name alu in our code). It has
inputs for the operands (usually two), which fan out to multiple combinational
circuits each implementing a different function. Then, the results of each circuit are
fed into a multiplexer which selects the one based on the selected function. The
following diagram shows only two functions (addition and bitwise XOR) to avoid
clutter:

ADD

XOR

x

y
mux f(x,y)

f

Chapter 13 CHIP-8274

For CHIP-8 specifically, we have nine arithmetic functions (the nine constructors
of Fun), and they fall into two categories:

• For OR, AND, and XOR, a binary operator on bytes (i.e. a function
Byte -> Byte -> Byte) is used to compute the result, and there is no
flag to write to VF. As a somewhat degenerate case, MOV also fits this category,
it just ignores its first operand.

• For ADD, SUB and SUBN, we have operators from 8 to 9 bits (i.e. functions
Unsigned 8 -> Unsigned 8 -> Unsigned 9), with the topmost bit acting as
the flag output. It is easy to see why this is the case for addition and sub-
traction: the carry from an 8-bit addition is the same as the topmost bit of
an extending addition (and similarly for the borrow when subtracting). Note
that the specification of SUB and SUBN calls for VF to be set to the complement of
borrow; we implement this by XOR’ing the result with 0x100.

• For SHL and SHR, if we implement them as a 9-bit rotation instead of shift (after
0-extending the 8-bit operand), the bit that is just getting shifted out from the
lower 8 bits will rotate exactly into the topmost bit.

The implementation follows this categorization, lifting functions producing 8-
or 9-bit sized results into the full type of alu:

alu :: Fun -> Byte -> Byte -> (Maybe Bit, Byte)
alu fun = case fun of

Mov -> noFlag (\x y -> y)
Or -> noFlag (.|.)
And -> noFlag (.&.)
XOr -> noFlag xor
Add -> withFlag add
Subtract -> withFlag sub'
SubtractNeg -> withFlag (flip sub')
ShiftRight -> withFlag (_ y -> extend y `rotateR` 1)
ShiftLeft -> withFlag (_ y -> extend y `rotateL` 1)

where
sub' x y = sub x y `xor` 0x100

noFlag
:: (Byte -> Byte -> Byte)
-> (Byte -> Byte -> (Maybe Bit, Byte))

noFlag f x y = (Nothing, f x y)

13.5 CPU 275

withFlag
:: (Unsigned 8 -> Unsigned 8 -> Unsigned 9)
-> (Byte -> Byte -> (Maybe Bit, Byte))

withFlag f x y = (Just c, z)
where

(c, z) = bitCoerce (f (bitCoerce x) (bitCoerce y))

Here we use add and sub, which are Clash-provided extending arithmetic func-
tions, i.e. they operate on n-bit inputs and provide n + 1-bit results.

13.5.3 Keypad access

The two instructions for interfacing with the keypad are SkipKeyIs and WaitKey.
Since the first one depends on the immediate state of the keys (which is available in
the keyState input) and doesn’t suspend execution, its implementation is going to
be more straightforward.

The register operand of SkipKeyIs b contains the key whose pressed state we
are interested in. Since registers contain 8 bits, but we only have 16 keys, we
convert from Byte to Key by taking its lower 4 bits; fortunately, that is exactly how
fromIntegral works for Unsigned numbers.

SkipKeyIs b vx -> do
key <- fromIntegral <$> getReg vx
let isPressed = keyState !! key
when (isPressed == b) skip

Implementing WaitKey takes a bit more effort, since it blocks execution until an
external event (a key release) happens. To suspend execution of further instructions,
we add a new Phasewhich will only go back to Fetchwhen the key release is detected.
To implement the actual detection, we need to remember the target register, and the
previous keypad state so that we have something to compare against.

data Phase
= WaitKeyRelease Reg KeypadState
| ...

The branch for WaitKey now becomes trivial: we take the choice of vx and the
current key state, and enter the WaitKeyRelease phase:

WaitKey vx -> do
phase .= WaitKeyRelease vx keyState

Chapter 13 CHIP-8276

The real work happens in the new branch for handling the WaitKeyReleasephase.
By comparing the stored previous key state to the current key state, we can find the
just now released key, if any, and write its value into the target register vx.

WaitKeyRelease vx prevState -> do
case keyRelease prevState keyState of

Just key -> do
setReg vx $ fromIntegral key
phase .= Fetch

Nothing -> do
phase .= WaitKeyRelease vx keyState

Note that when keyRelease finds Nothing, we pass the new key state to the
next cycle; this is so that we can properly detect the release of keys that weren’t
yet pressed at the beginning of the WaitKey instruction. As for keyRelease itself, it
simply looks for the index of the first key which was pressed before but isn’t now:

keyRelease :: KeypadState -> KeypadState -> Maybe Key
keyRelease prev new = bitCoerce <$> findIndex released (zip prev new)
where
released (before, now) = before && not now

13.5.4 Special-purpose registers

There are some instructions that operate on registers that have a life of their own:
the two timer registers change value once every tick, and reading twice from the
random number source should give a different value.

We implement the delay register as a simple 8-bit register, and decrement it by
one on every tick regardless of the execution phase:

data CPUState = CPUState
{ _timer :: !Byte
...
}

initState :: CPUState
initState = CPUState

{ _timer = 0
...
}

step :: Pure CPUIn -> CPU ()
step CPUIn{..} = do

when tick $ timer %= fromMaybe 0 . predIdx
use phase >>= \case ...

13.5 CPU 277

Then, the implementation of the instructions GetTimer and LoadTimer is trivial:

GetTimer vx -> do
setReg vx =<< use timer

LoadTimer vx -> do
x <- getReg vx
timer .= x

We could implement the sound timer similarly, but instead just stub it out:

LoadSound regX -> do
return ()

For the Randomize instruction, we require a source of pseudo-random numbers,
of at least 8 bits. We are going to implement this using a so-called linear-feedback shift
register, or LFSR for short. An LFSR is a shift register where the bit shifted out is
fed back into the rest of the bits. This way, the register can keep operating without
any further inputs, producing a new value in every cycle. The feedback structure
makes the evolution of its value seem chaotic, which is why it’s a good source of
pseudo-randomness. On the other hand, since it’s just a shift with some extra wires
and XOR gates, it allows for efficient implementation in hardware.

Let’s look at an example of a 4-bit LFSR. We will think of the state as a vector of
bits, so we’ll use indexing from left to right:

𝑏0 𝑏1 𝑏2 𝑏3 0

Here, in every cycle all the bits shift to the left, and 𝑏0 is fed back to positions
1 and 3 via XOR (which is just addition in Z2). So after one cycle, the new value
becomes ⟨𝑏1 , 𝑏0 ⊕ 𝑏2 , 𝑏3 , 𝑏0 ⊕ 0⟩. Let’s say we start from the state filled with all 1
bits; the evolution of the bit-vector will be as follows:

Step State

1. ⟨1, 1, 1, 1⟩
2. ⟨1, 0, 1, 1⟩
3. ⟨1, 0, 1, 1⟩
4. ⟨0, 0, 1, 1⟩
5. ⟨0, 1, 1, 0⟩
6. ⟨1, 1, 0, 0⟩
7. ⟨1, 1, 0, 1⟩
8. ⟨1, 1, 1, 1⟩

Chapter 13 CHIP-8278

It took 7 steps to get back to our initial state; since there are 16 possible 4-bit
vectors, this means we have only covered roughly half of the state space. By carefully
choosing the feedback structure, we can ensure that an 𝑛-bit LFSR will produce 2𝑛−1
different bit patterns before repeating; this is the best we can hope for, since the state
containing all zeroes will always be a fixed point. One example of such a maximal
LFSR for 4 bits, is the following structure:

𝑏0 𝑏1 𝑏2 𝑏3 0

Why this scheme produces 15 different values before repeating if the other one
only produced 7 is a deep topic best approached via finite field theory; as such, we
will omit the theoretical details here and just take maximal LFSR schemes from the
literature.

We implement a generic linear-feedback shift register as a pure function over bit
vectors, parameterized by a vector of coefficients describing where the shifted-out
bit should be fed back:

lfsr
:: (KnownNat n)
=> Vec (1 + n) Bit -> Vec (1 + n) Bit -> Vec (1 + n) Bit

lfsr coeffs (b0 :> bs) = zipWith xor (bs :< 0) feedback
where
feedback = fmap (b0 *) coeffs

For example, we can describe our first 4-bit LFSR as lfsr (0 :> 1 :> 0 :> 1 :>
Nil) and the second one as lfsr (1 :> 0 :> 0 :> 1 :> Nil). For the CHIP-8, we
need 8-bit output, so we’ll need an LFSR of at least 8 bits. We’re going to go with
a maximal 9-bit LFSR so that by taking its lowest 8 bits, we can cover the full set of
possible 8-bit values, including 0.

We can look up a maximal 9-bit LFSR in polynomial notation in Wikipedia to
find 𝑥9 + 𝑥5 + 1, which in our representation stands for 0 :> 0 :> 0 :> 1 :> 0 :>
0 :> 0 :> 0 :> 1 :> Nil (since the 𝑥9 term stands for the shift-out itself):

lfsr9 :: Unsigned 9 -> Unsigned 9
lfsr9 = bitCoerce . lfsr (unpack 0b0_0010_0001) . bitCoerce

Does it really work? Let’s generate 511 iterations in the REPL and check that it’s
maximal, and its lower 8 bits cover all possible bytes:

13.5 CPU 279

> let values = toList $ iterate (SNat @512) lfsr9 1
> L.length . L.nub . L.sort $ values
511

> let bytes = L.map fromIntegral values :: [Byte]

> L.nub (L.sort bytes) == [minBound..maxBound]
True

So this looks good. We extend CPUState to contain a 9-bit register which we will
update at every step:

data CPUState = CPUState
{ _randomState :: !(Unsigned 9)
...
}

initState :: CPUState
initState = CPUState

{ _timer = 0x100
...
}

step :: Pure CPUIn -> CPU ()
step CPUIn{..} = do

randomState %= lfsr9
...

And when executing a Randomize instruction, we just read out the value of its
lower 8 bits, via the given mask, for storage into vx:

Randomize vx mask -> do
rnd <- fromIntegral <$> use randomState
setReg vx $ rnd .&. mask

13.5.5 Graphics

The first graphical instruction we implement is ClearScreen, which simply writes
the 64-bit value 0 to all 32 video buffer cells. Since we can only write to one cell per
cycle, we add another Phase that goes through all 32 video addresses:

data Phase
= ClearVideoBuf VidY
| ...

Chapter 13 CHIP-8280

The implementation of ClearScreen simply starts the process by going to this
new phase:

ClearScreen -> do
phase .= ClearVideoBuf 0

For the implementation of the behavior in this new phase, we add the utility
function writeVid which sets both the address and the write-out lines going to the
video buffer. We will reuse it shortly.

ClearVideoBuf y -> do
writeVid y 0
phase .= maybe Fetch ClearVideoBuf (succIdx y)

where
writeVid y val = do

vidAddr .:= y
vidWrite .:= Just val

For DrawSprite, we need a similar approach to draw all rows of the sprite, but
with a bit more variability, since we only want to change the rows from 𝑉𝑦 to 𝑉𝑦 + ℎ.
Also, since the newly drawn sprite is combined with the existing screen contents
(using XOR), it is not enough to just write out new values: we need to read the
existing values first. This requires a two-step process, where in the first cycle we set
the video address to the intended target, then in the next one combine the video
read with the sprite data to compute the video write output to that same address.
We will orchestrate that through two new phases, going from DrawRead to DrawWrite
to the next row’s DrawRead, until we run out of sprite data or screen space:

data Phase
= DrawRead VidX VidY Nybble Nybble
| DrawWrite VidX VidY Nybble Nybble
| ...

We kickstart this process in the handling of the DrawSprite instruction by going
to the DrawRead x y height 0 phase. We also reset the flag register 𝑉𝐹 to 0, to be
set to 1 whenever we will encounter a collision during DrawWrite:

DrawSprite vx vy height -> do
x <- fromIntegral <$> getReg vx
y <- fromIntegral <$> getReg vy
setFlag 0
phase .= DrawRead x y height 0

In the DrawRead phase, we set up both address lines for DrawWrite: from the
main memory, we need to read the sprite data (starting at the pointer), and from

13.5 CPU 281

the video memory, we read the current row:

DrawRead x y height row -> do
spriteAddr <- use ptr
memAddr .:= spriteAddr + extend row
vidAddr .:= y + extend row
phase .= DrawWrite x y height row

In DrawWrite, we first check if there’s anything left to do: if we have drawn
enough rows, or if we’d need to draw out of screen, then we simply go back to
the Fetch phase. Otherwise, the previous DrawRead phase has ensured we have
the to-be-drawn sprite data in memRead (as an 8-bit value) and the current video
contents for the target line (i.e. the background) in vidRead. As discussed earlier,
we implement the horizontal translation to x by zero-extending to 64 bits and then
right-shifting the sprite data. Then we combine it with the background, bitwise, in
two ways: with XOR to compute the new screen pattern, and with AND to check
for collisions.

DrawWrite x y height row -> do
let finished = row == height

outOfBounds = msb (add y row) == 1
if finished || outOfBounds then phase .= Fetch else do

let bg = vidRead
sprite = bitCoerce (memRead, repeat low)
sprite' = sprite `shiftR` fromIntegral x
pattern = bg `xor` sprite'
collision = (bg .&. sprite') /= 0

when collision $ setFlag 1
writeVid (y + extend row) pattern
phase .= DrawRead x y height (row + 1)

The only remaining graphics-related instruction is LoadHex vx, which should set
up the pointer register such that a subsequent DrawSprite instruction can be used
to draw a 4×5 hexadecimal glyph showing the lower four bits of𝑉𝑥 . We implement
this by using the reserved address space below 0x200, and putting the glyph for
the numeral 𝑛 to address 8 ∗ 𝑛. This way, we can convert a 4-bit value into a glyph
starting address by simply shifting it to the left by 3:

LoadHex vx -> do
x <- getReg vx
ptr .= toHex (fromIntegral x)

where
toHex :: Nybble -> Addr
toHex x = extend x `shiftL` 3

Chapter 13 CHIP-8282

Of course, for this to work, we will have to remember to put the right sprite data
at the right addresses when we get to creating and hooking up the font ROM. To
this effect, we create a vector containing the sprite data for all digits:

hexDigits :: Vec (16 * 8) Byte

By specification, each digit should be 4 pixels wide and 5 pixels tall. We can flex
our creative muscles on this one, or just look up dumps of the original font online9

and pad each 5-byte sprite to 8 bytes for easier addressing:

hexDigits = concat . map pad $
(0xf0 :> 0x90 :> 0x90 :> 0x90 :> 0xf0 :> Nil) :>
(0x20 :> 0x60 :> 0x20 :> 0x20 :> 0x70 :> Nil) :>
(0xf0 :> 0x10 :> 0xf0 :> 0x80 :> 0xf0 :> Nil) :>
(0xf0 :> 0x10 :> 0xf0 :> 0x10 :> 0xf0 :> Nil) :>
(0x90 :> 0x90 :> 0xf0 :> 0x10 :> 0x10 :> Nil) :>
(0xf0 :> 0x80 :> 0xf0 :> 0x10 :> 0xf0 :> Nil) :>
(0xf0 :> 0x80 :> 0xf0 :> 0x90 :> 0xf0 :> Nil) :>
(0xf0 :> 0x10 :> 0x20 :> 0x40 :> 0x40 :> Nil) :>
(0xf0 :> 0x90 :> 0xf0 :> 0x90 :> 0xf0 :> Nil) :>
(0xf0 :> 0x90 :> 0xf0 :> 0x10 :> 0xf0 :> Nil) :>
(0xf0 :> 0x90 :> 0xf0 :> 0x90 :> 0x90 :> Nil) :>
(0xe0 :> 0x90 :> 0xe0 :> 0x90 :> 0xe0 :> Nil) :>
(0xf0 :> 0x80 :> 0x80 :> 0x80 :> 0xf0 :> Nil) :>
(0xe0 :> 0x90 :> 0x90 :> 0x90 :> 0xe0 :> Nil) :>
(0xf0 :> 0x80 :> 0xf0 :> 0x80 :> 0xf0 :> Nil) :>
(0xf0 :> 0x80 :> 0xf0 :> 0x80 :> 0x80 :> Nil) :>
Nil

where
pad = (++ repeat 0)

13.5.6 Memory access

The remaining three CHIP-8 instructions are the only ways in which RAM can be
directly accessed. All three can access multiple addresses from a single instruction,
so they necessarily take up multiple cycles and so will go through their own Phases.

Let’s start with StoreBCD. The real work is in computing the three BCD digits of
an 8-bit value. We can take the so-called shift-and-add-3 algorithm from the literature:
alternating a shift-left and an add-3 step on a buffer that is initialized with the input
in its lowest 𝑛 bits, and finishes with the BCD digits in the highest 𝑘 ∗ 4 bits, where
𝑘 is the number of decimal digits:

9One such source is at https://github.com/mattmikolay/chip-8/wiki/CHIP%E2%80%908-Technical-
Reference#fonts

https://github.com/mattmikolay/chip-8/wiki/CHIP%E2%80%908-Technical-Reference#fonts
https://github.com/mattmikolay/chip-8/wiki/CHIP%E2%80%908-Technical-Reference#fonts

13.5 CPU 283

type BCDSize n = CLog 10 (2 ^ n)

bitwise
:: (BitPack a)
=> (BitVector (BitSize a) -> BitVector (BitSize a))
-> (a -> a)

bitwise f = unpack . f . pack

toBCD
:: forall n. (KnownNat n)
=> Unsigned n
-> Vec (BCDSize n) (Unsigned 4)

toBCD = fst . last . iterate (SNat @(n + 1)) (shift . add) . init
where
init x = (repeat 0, x)

shift = bitwise (`shiftL` 1)

add (digits, buf) = (map add3 digits, buf)
where

add3 d = if d >= 5 then d + 3 else d

Why and how this works (i.e. why exactly we have to add 3 to all intermediate
digits at least 5) is beyond the scope of this book; but at least we can test it exhaus-
tively on 8-bit input using the Clash simulator, with the help of the toBCD function
from the Calculator project:

> let roundtrip = fromIntegral . fromBCD . toBCD
> :{
| let prop_roundtrip :: (KnownNat n) => Unsigned n -> Bool
| prop_roundtrip x = x == roundtrip x
| :}
> all (prop_roundtrip @8) [minBound..maxBound]
True

For larger sizes, we can use QuickCheck:

> import Test.QuickCheck
> quickCheck (prop_roundtrip @64)
+++ OK, passed 100 tests.

Now that we have a way of computing toBCD @8 that we are confident in, we just
need to write the three elements of the resulting vector of nybbles into RAM. We

Chapter 13 CHIP-8284

write this is similar to the drawing instructions: a new Phase goes through three
cycles, writing one cell at each step:

data Phase = WriteBCD Reg (Index 3) | ...

WriteBCD vx k ->
x <- getReg vx
addr <- uses ptr (+ fromIntegral k)
writeMem addr $ toBCD' x !! k
phase .= maybe Init (WriteBCD vx) (succIdx k)

where
toBCD' = fmap fromIntegral . toBCD . bitCoerce

The extra noise of toBCD' is merely because we operate on Byte (i.e. Word8) values,
but toBCD goes from Unsigned 8 to Unsigned 4 values. Note that when we are done
(i.e. when we run out of k), we don’t go to the next Fetch phase directly; instead, we
take a one-cycle detour via Init. This is because Fetch only works correctly if it is
receiving on memRead the next instruction’s high byte, which requires the value of
the pc register to be put on the address line previously. However, to write the last
decimal digit to memory, in the WriteBCD vx 2 state we set the memory address
line to 𝐼 + 2, so we need the extra cycle provided by Init to arrange for the program
counter’s value to appear on the address bus before the Fetch.

Then the implementation of StoreBCD just starts this process by entering the
WriteBCD phase:

StoreBCD vx -> do
phase .= WriteBCD vx 0

The implementation of StoreRegs is along the same way: we go through the
registers from 0 to the last one requested, write each one to the right memory
address, and go back to Init when done:

data Phase = WriteRegs Reg Reg | ...

WriteRegs reg end -> do
addr <- uses ptr (+ fromIntegral reg)
writeMem addr =<< getReg reg
phase .= if reg == end then Init else WriteRegs (reg + 1) end

StoreRegs vx -> do
phase .= WriteRegs 0 vx

For LoadRegs, we proceed similarly. The one difference is that we need to always

13.5 CPU 285

be one step ahead of ourselves: when we get to loading the value of register 𝑉4, we
take its value from the memory read line, which means the memory address line
should have been set to 𝐼 + 4 in the previous cycle. Accordingly, in this cycle we
should set the address line to 𝐼 +5 in preparation for the next cycle. This also means
that when we are loading the last register’s value, we can just go straight to Fetch
without setting the address line (which means it will get the value of the program
counter, as default), instead of taking a detour via Init.

data Phase = ReadRegs Reg Reg | ...

ReadRegs reg end -> do
setReg reg memRead
if reg == end then phase .= Fetch else do

let reg' = reg + 1
addr <- uses ptr (+ fromIntegral reg')
memAddr .:= addr
phase .= ReadRegs reg' end

We jumpstart ReadRegs by setting the address line to 𝐼, the memory address
corresponding to the source of loading 𝑉0:

LoadRegs vx -> do
addr <- use ptr
memAddr .:= addr
phase .= ReadRegs 0 vx

13.5.7 All CPU registers

Because we have developed CPUState and Phase piecewise, it is worthwhile to
include their definitions in full in one place:

data Phase
= Init
| Fetch
| Exec Byte
| WaitKeyRelease Reg KeypadState
| ClearVideoBuf VidY
| DrawRead VidX VidY Nybble Nybble
| DrawWrite VidX VidY Nybble Nybble
| WriteBCD Reg (Index 3)
| WriteRegs Reg Reg
| ReadRegs Reg Reg
deriving (Show, Generic, NFDataX)

Chapter 13 CHIP-8286

data CPUState = CPUState
{ _pc, _ptr :: !Addr
, _registers :: !(Vec 16 Byte)
, _stack :: !(Stack 24 Addr)
, _phase :: !Phase
, _timer :: !Byte
, _randomState :: !(Unsigned 9)
}
deriving (Show, Generic, NFDataX)

makeLenses ''CPUState

13.6 Simulation, take 1

Before we move on to the connective tissue filling in the blanks between the CPU
and the video system, it is worthwhile to see our CPU in action by hooking it up to
a high-level simulator in the same vein as what we did for the Brainfuck machine:
a Haskell program that uses the CPU implementation as a pure State computation,
which we connect to an SDL-based frontend.

We start with the implementation of the dual of the CPU: a function that maps
one step’s CPUOut to the next step’s CPUIn. We will use mutable, unboxed arrays to
store the contents of the RAM and the video buffer, so our function itself will also
live in IO. The other parameters of the function are the keypad state (mapped to
SDL keyboard inputs) and the once-per-frame timer tick:

world
:: IOUArray Addr Word8
-> IOUArray VidY Word64
-> KeypadState
-> Bool
-> Pure CPUOut
-> IO (Pure CPUIn)

world ram vid keyState tick CPUOut{..} = do
memRead <- readArray ram _memAddr
vidRead <- readArray vid _vidAddr

traverse_ (writeArray ram _memAddr) _memWrite
traverse_ (writeArray vid _vidAddr) _vidWrite

return CPUIn{..}

To prepare the keypad state, we need a mapping of host keyboard keys to keypad
locations. We will then compose it with the CHIP-8 keypad layout that we have

13.6 Simulation, take 1 287

already defined, to map keyboard keys to hexadecimal values:

keyboardLayout :: Matrix 4 4 Scancode
keyboardLayout =

(Scancode1 :> Scancode2 :> Scancode3 :> Scancode4 :> Nil) :>
(ScancodeQ :> ScancodeW :> ScancodeE :> ScancodeR :> Nil) :>
(ScancodeA :> ScancodeS :> ScancodeD :> ScancodeF :> Nil) :>
(ScancodeZ :> ScancodeX :> ScancodeC :> ScancodeV :> Nil) :>
Nil

We then turn that into a 16-element vector of SDL scan codes by applying the
CHIP-8 layout as a permutation to the flattened list of codes, using the scatter
vector function from the Clash Prelude:

keyboardMap :: Vec 16 Scancode
keyboardMap = scatter (repeat ScancodeUnknown)

(concat layout)
(concat keyboardLayout)

We will use an IOUArray to hold the video buffer’s contents, and freeze it into
an immutable array to make a pattern rasterizer that reads the right bit from the
right row. Not the fastest way to go, but not slow enough to matter compared to the
CPU simulation itself.

rasterizeVideoBuf
:: (MonadIO m) => IOUArray VidY Word64 -> m (Rasterizer 64 32)

rasterizeVideoBuf vid = do
vidArr <- liftIO $ freeze vid
return $ rasterizePattern $ \x y ->
let fg = (0xe7, 0xc2, 0x51)

bg = (0x50, 0x50, 0x50)
row = vidArr ! bitCoerce y

in if testBit row (fromIntegral (maxBound - x)) then fg else bg

The rest of the simulator is straightforward:

cpuMachine :: Pure CPUIn -> State CPUState (Pure CPUOut)
cpuMachine = runCPU defaultOut . step

videoParams = MkVideoParams
{ windowTitle = "CHIP-8"
, screenScale = 20
, screenRefreshRate = 60
}

Chapter 13 CHIP-8288

main :: IO ()
main = do

fileName <- listToMaybe <$> getArgs
fileName <- return $ fromMaybe (error "no image file name") fileName
img <- BS.readFile fileName

1. We make an IOUArray for the main RAM, initializing it starting from 0x000
with the font data, then from 0x200 with the contents of the desired CHIP-8
game data.

ram <- do
ram <- newArray (minBound, maxBound) 0
zipWithM_ (writeArray ram) [0x000..] (toList hexDigits)
zipWithM_ (writeArray ram) [0x200..] (BS.unpack img)
return ram

vid <- newArray (minBound, maxBound) 0

2. Our simulation’s state consists of the next cycle’s CPU input and the CPU
registers.

let initInput = CPUIn
{ memRead = 0
, vidRead = 0
, tick = False
, keyState = repeat False
}

flip evalStateT (initInput, initState) $
withMainWindow videoParams $ \events keyDown -> do

guard $ not $ keyDown ScancodeEscape
let keyState = fmap keyDown keyboardMap

3. In each frame, we run the CPU for multiple steps. The first simulation step
will receive True as the timer tick input, and subsequent steps for the same
frame will receive False.

let sim tick = do
(inp, s) <- get
let (out, s') = runState (cpuMachine inp) s
inp' <- liftIO $ world ram vid keyState tick out
put (inp', s')

sim True
replicateM_ 5000 $ sim False

rasterizeVideoBuf vid

13.7 The complete machine 289

We can run it with existing CHIP-8 games, old and new. This screenshot is
showing David Winter’s game Hidden:

13.7 The complete machine

With the major parts ready, it is time to turn our attention to integration. We take
an approach similar to the Brainfuck computer:

• The logic board will consist of the CPU and its supporting memory compo-
nents: the ROM containing the hexadecimal glyphs, the main RAM, and the
CPU’s copy of the video RAM.

• The top-level circuit connects the logic board to the peripherals via the video
signal generator and the keypad scanner.

13.7.1 Memory address decoding

As far as the CPU is concerned, it is accessing a single unified 12-bit address space
via the memAddr, memRead and memWrite pins. However, the first 512 bytes of that
memory is reserved for implementation-specific use: we want to use it for font data,
so we will put a 512-byte ROM there (and ignore writes to that area), and only use
a 4096 − 512 = 3584-byte RAM for the rest.

To connect multiple memory elements to the same address and data lines, we
need to decide, based on the address line’s value, which memory’s read value
should be put on the data line. Similarly, write requests should only be applied to
the single right memory component.

For a machine as simple as the CHIP-8, writing the address decoding logic by
hand isn’t too bad: our only two components are the font ROM initialized using
our vector of hexadecimal glyphs, and the main RAM initialized with the contents

Chapter 13 CHIP-8290

of a CHIP-8 game. We can read the type of logicBoard from the system overview
diagram at this chapter’s beginning, by circumscribing the CPU and the memory
elements:

logicBoard
:: (HiddenClockResetEnable dom)
=> FilePath
-> Signal dom Bool
-> Signal dom KeypadState
-> Signal dom (Maybe (VidY, VidRow))

Inside logicBoard, after we instantiate our CPU, and create the video RAM, we
can start making sense of its _memAddr output. Computing either the font ROM
address (if it is below 0x200), or the main RAM address, is a matter of a simple
comparison:

logicBoard programFile tick keyState = vidOut
where
CPUOut{..} = cpu CPUIn{..}
vidOut = packWrite <$> _vidAddr <*> _vidWrite

vidRead = blockRam1 NoClearOnReset (SNat @32) 0 _vidAddr vidOut

fontAddr = enable (_memAddr .< 0x200) _memAddr
ramAddr = enable (0x200 <=. _memAddr) (_memAddr - 0x200)

-- Continued below

Note that we are deliberately not defining ramAddr as “whenever fontAddr is
Nothing” or vice versa: this is to hint at the shape of this code if we had more than
two components connected to the address bus.

Given these decoded addresses, we can connect them to their respective memory
elements. Note that fontAddr and ramAddr contain Maybe Addr values, with Nothing
denoting that that element is not the selected one. But all the memory primitives
like blockRamFile require an input signal that contains an address, always, so how
are we going to handle the Nothings?

Recall that these synchronous memory elements produce output delayed by
one clock period. Let’s say _memAddr’s value was 0x012 in a given period. That
means fontAddr will have value Just 0x012, while ramAddr is Nothing. If we
connect fromJustX <$> fontAddr to the font ROM’s address bus10 (and, similarly,

10fromJustX is a Clash-specific version of fromJust that has better simulation properties

13.7 The complete machine 291

fromJustX <$> ramAddr to the main RAM), then in the next period, we will have a
valid read result in font, and an undefined value in ram:

font = rom (hexDigits ++ repeat 0 :: Vec 0x200 Byte) $
fromJustX <$> fontAddr

ram = packRam (blockRamFile (SNat @(0x1000 - 0x200)) programFile)
(fromJustX <$> ramAddr)
(liftA2 (,) <$> ramAddr <*> _memWrite)

When we then multiplex these two reads into the single relevant one, we use font
exactly when fontAddr was valid in the previous period, and ram when ramAddr was
valid. This way, the undefined read from the undefined result of fromJustX Nothing
is never connected to ramRead.

memRead = muxA
[enable (register False $ isJust <$> fontAddr) font
, enable (register False $ isJust <$> ramAddr) ram
] .<|
0

Similar to the romFile variants we’ve used earlier, the blockRamFile family of
Clash primitives creates BitVector-containing memory, hence we need to unpack
the read values, and pack the write requests, in the definition of our ram:

packRam
:: (BitPack d) => RAM dom a (BitVector (BitSize d)) -> RAM dom a d

packRam ram addr = fmap unpack . ram addr . fmap (second pack <$>)

13.7.2 The top-level circuit

Not much work remains: we know the intended type of topEntity simply from the
peripherals of the complete CHIP-8 machine: the 4× 4 keypad and the VGA screen:

topEntity
:: "CLK_25MHZ" ::: Clock Dom25
-> "RESET" ::: Reset Dom25
-> "ROWS" ::: Signal Dom25 (Vec 4 (Active Low))
-> ("COLS" ::: Signal Dom25 (Vec 4 (Active Low))

, "VGA" ::: VGAOut Dom25 8 8 8
)

Implementation-wise, the interfaces of scanKeypad, video and logicBoard pretty
much prescribe the definition of topEntity. The 4×4 state of the keypad matrix scan-

Chapter 13 CHIP-8292

ner is flattened into a 16-element vector using exactly the same approach we have
used in the simulator: by applying the keypad-to-value layout as a permutation.

topEntity = withEnableGen board
where
board rows = (cols, vga)
where

(cols, keypadState) = scanKeypad rows
keyState =

debounce (SNat @(Milliseconds 5)) (repeat False) $
fmap (scatter (repeat False) (concat layout)) $
concat <$> keypadState

(frameEnd, vga) = video vidWrite
vidWrite = logicBoard "image.bin" frameEnd keyState

At this point, we have built a complete CHIP-8 machine that can run existing
CHIP-8 software. However, there is one improvement that is very instructive in
understanding how real computers of the era worked: avoiding the duplication of
video RAM. Since the change will be somewhat involved, we first write a Signal-
level simulation of the complete logicBoard, to help with testing.

13.8 Simulation, take 2

The first simulator in this chapter took the CPU step function and ran it as a Haskell
computation. Here, we instead take the full logicBoard as a Signal-to-Signal
stateful circuit, and use the simulateIO interface to the Clash signal simulator.

The changes compared to the high-level CPU simulator are quite localized: since
the main RAM and the CPU’s copy of the video RAM are both inside the logicBoard,
they don’t need to be manually simulated in world. Note that we still need a copy of
the video RAM in the simulator for rendering purposes; but that copy is write-only
as far as logicBoard is concerned.

world
:: IOUArray VidY Word64
-> Maybe (VidY, VidRow)
-> IO ()

world vid vidWrite = for_ vidWrite $ \(addr, row) -> do
writeArray vid addr row

The main function then becomes an amalgamation of the ideas we’ve seen in the
Brainfuck Signal-level simulator and the CHIP-8 high-level simulator:

13.9 Memory contention 293

1. We create a temporary file containing the initial memory contents in the file
format used by blockRamFile, and initialize the simulator.

main :: IO ()
main = withSystemTempFile "chip8-.bin" $ \romFile romHandle -> do

fileName <- listToMaybe <$> getArgs
fileName <- return $ fromMaybe (error "no image file name") fileName
img <- BS.readFile fileName
hPutStr romHandle $ unlines $

binLines (Just (0x1000 - 0x200)) (BS.unpack img)
hClose romHandle

sim <- simulateIO_ @System
(uncurry (logicBoard romFile) . unbundle)
(False, repeat False)

2. We create the array that will hold the simulator’s copy of the video buffer.

vid <- newArray (minBound, maxBound) 0

3. We use SDL, this time without any additional state since the circuit state is
now handled internally by simulateIO_. In each frame, we run the simulation
for 1,001 cycles: once with a timer tick, and 1,000 times without.

withMainWindow videoParams $ \events keyDown -> do
guard $ not $ keyDown ScancodeEscape

let keyState = fmap keyDown keyboardMap

let step tick = do
sim $ \vidWrite -> do

liftIO $ world vid vidWrite
return (tick, keyState)

step True
replicateM_ 1000 $ step False

rasterizeVideoBuf vid

13.9 Memory contention

In our CHIP-8 computer, we have a piece of memory (the video buffer) that needs
to be accessed by two components: the CPU and the video signal generator. This

Chapter 13 CHIP-8294

means we can get into a situation where two components want to read from two
different addresses at the same time. So far, we have worked around this problem
by giving each component its own copy of the video buffer that they can address to
their heart’s content. However, this is a cop-out: this approach simply doesn’t scale
beyond toy examples.

For example, on the COSMAC VIP, the total RAM was 1 or 2 kB depending on
the model. For the 64 × 32 = 2048 pixels, we need 256 bytes, which is one-fourth
(or one-eighth) of total memory, so including it twice would be quite a significant
cost increase. And from our contemporary point of view, block RAM can be quite a
limited resource depending on the FPGA board used: we can come up against this
problem quite easily on larger designs.

Of course, in more complicated machines, there can be more components than
just the CPU and the video generator that need access to shared memory. This
situation in general is called memory contention, because there’s a disagreement
between various parties on what memory cell should be addressed.

In this section, we are going to remove the duplication of video memory, and
instead put a requirement on the CPU to wait for its turn in case of a conflict. We are
prioritizing the video system’s access because the electron beam on the CRT waits
for no one: if we don’t have the row register ready to shift out the next pixel’s color,
we are going to get a visual artifact.

13.9.1 Waiting for vidRead

Before we decide on the details of scheduling, the first change we do is on the CPU
side: we wrap the vidRead input in a Maybe and then start chasing down the type
errors.

declareBareB [d|
data CPUIn = CPUIn

{ memRead :: Byte
, vidRead :: Maybe VidRow
, keyState :: KeypadState
, tick :: Bool
} |]

The only knock-on effect of this inside the CPU is that in the DrawWrite phase,
we might not have read the current pixel values (i.e. the background) yet. We will
simply stay put in that case, retrying in the next cycle.

When the data to draw on is available from vidRead as Just bg , i.e. contingent on
a successful read from the video buffer, the implementation matches the previous
version (using bg from the pattern match instead of aliasing vidRead). The pseudo-
random number generator and the delay timer are updated independently.

13.9 Memory contention 295

step :: Pure CPUIn -> CPU ()
step CPUIn{..} = do

randomState %= lfsr9
when tick $ timer %= fromMaybe 0 . predIdx

use phase >>= \case -- Other branches unchanged
DrawWrite x y height row -> case vidRead of

Nothing -> do
spriteAddr <- use ptr
memAddr .:= spriteAddr + extend row
vidAddr .:= y + extend row

Just bg -> do
let finished = row == height

outOfBounds = msb (add y row) == 1
if finished || outOfBounds then phase .= Fetch else do

let sprite = bitCoerce (memRead, repeat low)
sprite' = sprite `shiftR` fromIntegral x
pattern = bg `xor` sprite'
collision = (bg .&. sprite') /= 0

when collision $ setFlag 1
writeVid (y + extend row) pattern
phase .= DrawRead x y height (row + 1)

The one subtlety comes in the Nothing branch inside DrawWrite, where we do the
same setup of memAddr and vidAddr that we have previously done in the DrawRead
phase. This is needed because if the CPU doesn’t get access to RAM in the given
cycle, we need to be set up correctly to retry in the next cycle. For example, if we
didn’t set memAddr here, the next cycle’s DrawWritewould see the memory read result
from the program counter because of the default values of the CPUOut fields.

13.9.2 Removing the duplicate video buffer

The next change is in logicBoard: we remove its copy of the video buffer, and instead
connect the CPU’s video address and data lines directly to the rest of the circuit.

logicBoard
:: (HiddenClockResetEnable dom)
=> FilePath
-> Signal dom Bool
-> Signal dom KeypadState
-> Signal dom (Maybe VidRow) -- New input
-> (Signal dom VidY -- New output

, Signal dom (Maybe VidRow)
)

logicBoard programFile tick keyState vidRead = (_vidAddr, _vidWrite)

Chapter 13 CHIP-8296

We will connect these new signals to the video system, where the rubber hits the
road and the actual memory contention resolution will happen. The changes to the
video board’s interface is as expected: the write request is unbundled into separate
address line (for CPU-originating reads) and data line parameters, and the memory
read results become a new output signal:

video
:: (HiddenClockResetEnable Dom25)
=> Signal Dom25 VidY -- Newly unbundled
-> Signal Dom25 (Maybe VidRow)
-> (Signal Dom25 Bool

, Signal Dom25 (Maybe VidRow) -- New output
, VGAOut Dom25 8 8 8
)

Before we move on the changes in video’s definition, for completeness’s sake we
round off the refactoring by changing topEntity to connect the new logicBoard and
video signals:

topEntity = withEnableGen board
where
board rows = (cols, vga)
where

(frameEnd, vidRead, vga) = video vidAddr vidWrite
(vidAddr, vidWrite) = logicBoard "image.bin" frameEnd keyState

vidRead
-- Rest unchanged

At this point, it is probably a good idea to also update our logic board-level
simulator, to help with debugging potential issues in the CPU changes. For exam-
ple, this makes it easy to try out what would happen if we didn’t propagate the
correct memAddr and vidAddr values in DrawWrite when stalled. Most of the simu-
lator changes are straightforward by just following the type errors arising from the
logicError change. Because the video buffer is not write-only anymore, we return
the video read result from world:

world
:: IOUArray VidY Word64
-> VidY
-> Maybe VidRow
-> IO VidRow

world vid vidAddr vidWrite = do
traverse_ (writeArray vid vidAddr) vidWrite
readArray vid vidAddr

13.9 Memory contention 297

To make the types work out, we could change the definition of step inside main
to simply always have a video memory read result available:

let step tick = sim $ \(vidAddr, vidWrite) -> do
vidRead <- liftIO $ world vid vidAddr vidWrite
return (tick, keyState, Just vidRead)

step True
replicateM_ 1000 $ step False

But that wouldn’t really show us how the CPU behaves when stalled. Instead,
we will allow video memory reads only in some awkward schedule; for example
like this:

let step i = sim $ \(vidAddr, vidWrite) -> do
let tick = i == 0

allowVideoAccess = (i `mod` 23) `elem` [1, 8, 13]
vidRead <- liftIO $ world vid vidAddr vidWrite
return (tick, keyState, vidRead <$ guard allowVideoAccess)

mapM_ step [0..1000]

The choice of only serving the CPU’s video reads on every first, eighth and
thirteenth cycle of a repeating 23-cycle pattern is completely arbitrary and hopefully
irregular enough that if the simulation shows the CPU working correctly, then
whatever other scheme we end up with will also work.

13.9.3 Resolving memory contention

Now we get to the meat of this section: changing the implementation of the video
signal generator to serve the CPU’s video buffer read requests.

Our goal is to make sure we have the 64 bits of the next line available for loading
into the row register whenever we need it. This means the single address signal
connected to the block RAM element must take the value of the next line rendered.
At other times, when the video rendering doesn’t need memory access, we can
instead route the CPU’s vidAddr line to that same address signal. Similarly, the
single read-out line coming from the block RAM needs to be used both as the new
row value to load, and also as the vidRead input to the CPU.

Let’s repeat the relevant parts of the definition of video, to see what exactly
needs to be done:

Chapter 13 CHIP-8298

video
:: (HiddenClockResetEnable Dom25)
=> Signal Dom25 (Maybe (VidY, VidRow))
-> (Signal Dom25 Bool

, VGAOut Dom25 8 8 8
)

video write = (frameEnd, delayVGA vgaSync rgb)
where
lineStart = liftD (isRising False) $ (isJust <$> vgaX')

address = bitCoerce <$> guardA lineStart vgaY'
load = delayedRam (blockRam1 NoClearOnReset (SNat @32) 0)

(address .<| 0) (fromSignal write)

row = delayedRegister 0 $ \row ->
mux (delayI False $ isJust <$> address) load $
mux (delayI False newX) ((`shiftL` 1) <$> row) $
row

-- Other local definitions omitted

Now we have two possible addresses to choose from: to avoid confusion, we
will call the one coming from the CPU cpuAddr, and the one needed for rasteri-
zation vgaAddr. Since video internally uses DSignals to track signal delay due to
synchronous RAM, we start by converting cpuAddr and write to DSignals as well:

video
:: (HiddenClockResetEnable Dom25)
=> Signal Dom25 VidY
-> Signal Dom25 (Maybe VidRow)
-> (Signal Dom25 Bool

, Signal Dom25 (Maybe VidRow)
, VGAOut Dom25 8 8 8
)

video (fromSignal -> cpuAddr) (fromSignal -> write) =
(frameEnd, toSignal cpuRead, delayVGA vgaSync rgb)

where
vgaAddr = bitCoerce <$> guardA lineStart vgaY'
-- Continued below

One simple design is to always set address to vgaAddr in the vertical visible
region, and only use cpuAddr during the vertical blanking period. This is not the
most efficient approach: we only really look at the value of load once per (physical)
line, everything else is handled by the 64-bit shift register containing the current row,

13.9 Memory contention 299

so there are lots of cycles during the visible period that could let the CPU access the
video buffer. Regardless, we implement this approach first, because it is a design
that was used by a lot of the computers of the era we are targeting; its other benefit is
the easy predictability. A common design for games running on such architectures
is to do as much computation as possible during the visible area, then switch over
to drawing during the vertical blanking.

As an aside, there are also retro-architectures where the opposite makes sense:
if the video system allows direct real-time manipulation of the currently drawn
pixel, then we can let precisely timed code run during the visible period to draw the
screen, and only do non-graphics-related computation during blanking. The Atari
2600 console is the most famous poster-child of this “racing the beam” approach,
but it is also an important consideration for programs that go “beyond” what the
hardware is “supposed to be” capable of, such as displaying more than 8 sprites
at the same time on the screen on a Commodore 64 by reprogramming the video
chip’s registers while the screen is drawn.

We give the CPU access to the video RAM during the blanking period by con-
necting vgaAddr to the block RAM if vgaY is set, and to cpuAddr otherwise:

vblank = fromSignal $ isNothing <$> vgaY
address = mux vblank cpuAddr (vgaAddr .<| 0)

load = delayedRam (blockRam1 NoClearOnReset (SNat @32) 0)
address (packWrite <$> cpuAddr <*> write)

Accordingly, we connect load to the cpuRead output if it corresponds to a CPU-
originating address:

cpuRead = enable (delayI False vblank) load

Note that there is still a little bit of cheating going on here: we lean heavily on
the fact that the Clash block RAM primitives are dual port. This means that we are
able to write to the RAM while reading from it, even at an address unrelated to
the read address. This is why we can connect packWrite <$> cpuAddr <*> write
unconditionally to the write port of the video buffer; this also means the CPU doesn’t
have to include special logic to wait for writes to take effect. The real hardware RAM
chips used in the COSMAC VIP, or any other contemporary home computer, were
single port, allowing for either reading or writing in a given cycle, but not both at the
same time.

Of course, even with dual port RAM, if there are multiple components that
could potentially write to the same memory element, we need to implement write
arbitration similar to the read side. In this book, the computers all follow this
pattern of the CPU being the only component writing to video RAM; because write
contention can be solved similarly, and because modern FPGA development boards

Chapter 13 CHIP-8300

all contain dual-port block RAM, we will stick to exploiting this shortcut instead of
complicating the circuits with write-acknowledgment signals.

Before we move on to improve this design by letting the CPU access the memory
anytime the video generator doesn’t need it, let’s measure the throughput we can
get with this current approach. To do this, we will use the Clash simulator to run
the video signal generator for a full frame, and count the number of cycles where
the video buffer read output is available.

We can get one frame’s worth of output by running between two consecutive
frameEnd signals:

> let (frameEnd, cpuRead, _) = video (pure 0) (pure Nothing)
> let sim = sample $ bundle (frameEnd, cpuRead)
> import qualified Data.List as L
> let dropFrame = dropWhile (not . fst)
> let takeFrame (x:xs) = x : takeWhile (not . fst) xs
> let frame = takeFrame . dropFrame $ sim
> L.length frame
419200

As a sanity check, this frame size matches what we can calculate from the timing
specification for the 60 Hz 640 × 480 VGA mode we use: including the front and
back porches and the sync spike, horizontally we have 640+16+96+48 = 800 cycles
and vertically 480 + 11 + 2 + 31 = 524, for a total of 800 × 524 = 419200 cycles per
frame.

To calculate the throughput of reading from the video buffer, we simply count
the Just values of cpuRead:

> L.length $ L.filter (isJust . snd) frame
35200

So this gives us a baseline figure of 35,200 video buffer access cycles per frame.
Now we will change the video signal generator to allow video RAM reads in every
cycle where there is no need to load a new value into the shift register. The change
is actually quite small: we have already arranged for vgaAddr to be a Just value
only when we need it, so instead of vblank, we can simply use its Just-ness for the
arbitration:

addr = vgaAddr .<|. cpuAddr
cpuRead = enable (delayI False $ isNothing <$> vgaAddr) load

With this small change, we have dramatically increased the throughput and
latency of CPU to video RAM access:

> L.length $ L.filter (isJust . snd) frame
418880

13.9 Memory contention 301

Exercises:

• Some of the second-wave CHIP-8 implementations differed from the original
COSMAC VIP CHIP-8 in some details, and because of their widespread use,
there are lots of CHIP-8 games out there that only work with these changes.
Add switches that change the behavior of the following, historically problem-
atic instructions:

– Change the ShiftLeft and ShiftRight ALU operations to ignore 𝑉𝑦 and
use 𝑉𝑥 both as input and output.

– Change ReadRegs and WriteRegs to adhere to the original CHIP-8 spec
and increment the pointer register’s value.

The switches can be either synthesis-time flags, or real physical switches that
allow the user to fine-tune the CHIP-8 CPU’s behavior for any given game.

• The shift-and-add-3 combinational circuit of toBCD is very deep: it involves
eight shifts, and three conditional 4-bit additions per shift. This can be a
problem (especially if scaled up to larger than 8 bits), because the depth of
the circuit puts a limit on the maximum clock speed possible. Instead, we can
add a new CPU Phase that runs a single stepBCD for eight cycles.

• The total size of CPUState includes the register to hold the Phase, and the
largest Phase constructors are DrawRead and DrawWrite. We can reduce their
size somewhat by storing the remaining number of rows and stopping when it
hits 0. Requires a bit more calculations upfront to implement proper vertical
clipping. Another small gain to be had is noticing that the X and Y coordinates
are 6 and 5 bits, respectively, but the choice of register for each is only 4.

• In the video signal generator, after shifting out the 64 bits that make up one
physical line, the value of the row buffer becomes 0. If we use rotateL instead
of shiftL, we get back the original value after 64 rotations, meaning we are
ready to draw the same line again. Use this to decrease the video signal
generator’s memory access further, so that we fetch from the video buffer only
once per virtual line instead of physical line. This should give us 419,168
cycles of CPU memory access per frame. Hint: as written, vgaX' changes 65
times per line, including the final transition from Just 63 to Nothing, so we
need to be a bit more careful.

• Although we have completely skipped over sound, the CHIP-8’s audio ca-
pabilities are so simple that we can easily implement them with an external
active buzzer, i.e. a component that makes a buzzing noise whenever voltage

Chapter 13 CHIP-8302

is applied. Add a one-bit “sound enable” output controlled by the LoadSound
instruction, and connect it to the buzzer.

• As written, the block RAM for main memory is initialized with a single game’s
data chosen at synthesis time. Since each game takes up a maximum of 3584
bytes, depending on the block RAM capacity of the targeted FPGA, we might
be able to store tens or even hundreds of games. Implement a simple game
selection mechanism where some input (for example, four switches for 16
games) allows the user to select between different block RAMs, each initialized
with a different game’s data.

13.10 Summary

• The CHIP-8 was originally a virtual machine running on very resource-
constrained platforms, even for its time. In this chapter, we implemented
it in hardware, starting by analyzing the instruction set, and figuring out the
parts that are needed to support them.

• It is a von Neumann machine using 16-bit instructions stored in 8-bit-
addressable memory. This requires a separate CPU phase to fetch the first
byte vs. executing an instruction once we have both bytes.

• In previous chapters, video output was generated by computing each pixel’s
color from some internal state. In this chapter, we have moved on to memory-
backed graphics instead: each pixel’s intended color is stored in its own
memory cell, as an index into a palette (of just two colors, in the case of
CHIP-8).

• The synchronous memory used for the video buffer introduces delay, which
caused us problems in making sure the VGA color lines were in sync with
the CRT beam’s position. Clash’s DSignal type helps by tracking signal delay
statically. We have engineered the video system to take care of synchroniza-
tion internally, presenting to the rest of the system the full, consistent VGA
signal.

• Since the CPU and the video signal generator both needs access to the video
buffer, we needed to solve memory contention by prioritizing the video sys-
tem. Fine-grained scheduling leads to lower latency and higher throughput
for the CPU’s video buffer access; the computers of the time usually used a
much simpler arbitration scheme where CPU access is only permitted during
vertical blanking.

14Address decoding and memory maps

One important component of our CHIP-8 was the logic to decode the CPU’s address
output according to the following, very simple, memory map:

• 512 bytes of (font) ROM starting at address 0x000
• 3584 bytes of RAM starting at address 0x200

Let’s recall the code we wrote that implements the above logic:

fontAddr = enable (_memAddr .< 0x200) _memAddr
ramAddr = enable (0x200 <=. _memAddr) (_memAddr - 0x200)

font = rom (hexDigits ++ repeat 0 :: Vec 0x200 Byte)
(fromJustX <$> fontAddr)

ram = packRam (blockRamFile (SNat @(0x1000 - 0x200)) programFile)
(fromJustX <$> ramAddr)
(liftA2 (,) <$> ramAddr <*> _memWrite)

memRead = muxA
[enable (register False $ isJust <$> fontAddr) font
, enable (register False $ isJust <$> ramAddr) ram
] <|. 0

The topic of this chapter is developing abstractions that allow us to rewrite the
above code into a form that is much closer to the above textual description. These
abstractions will help in further chapters as memory maps become more complex.

14.1 Room for improvement

Dedicating a whole chapter to this problem only makes sense if we are not satisfied
with the hand-written code. So what are its problems that we hope to improve?

First of all, there is the disconnect between the three parts of our code: matching
the address against subintervals, using each matched sub-address to create a mem-

303

Chapter 14 Address decoding and memory maps304

ory component, and then using multiplexing the read results into a single memRead.
We could have easily accidentally used isJust <$> fontAddr to select ram.

Second is just how verbose it is, when the actual information to characterize the
whole memory map is just the sizes and types of components, and their place in the
address space. Some of this verbosity is local, like how we check that _memAddr is at
least 0x200 before subtracting 0x200 from it to calculate its intra-component offset;
and some of this is global: compare the whole code to the two bullet points of text
preceding it.

A much nicer approach would be taking a declarative description of the memory
map, and generating everything else from it. Maybe something like the following:

memRead = fromMaybe 0 <$> memoryMap _memAddr _memWrite
[from 0x000 $ romFromVec (hexDigits ++ repeat 0 :: Vec 0x200 Byte)
, from 0x200 $ ramFromFile (SNat @(0x1000 - 0x200)) programFile
]

Note that while we have to give the size (as a static parameter) for the RAM, we
can infer the size of the ROM from its contents.

While this is about as concise as it could be (it corresponds directly to our two
original bullet points), it overfits to the CHIP-8 example in some important regards:

• In some designs, the same memory component is connected to multiple parts
of the address space. For example, imagine a 16-bit address space, with
the same 4 kB RAM mapped both from 0x7000 and 0xf000. This sharing is
observably different from having two 4 kB RAM components, since the value
written to 0x789a is then also available for reading from 0xf89a.

• Components can be shared between the CPU and other elements, leading to
potential access contention. The CHIP-8 provided an example of this when
accessing the video RAM, but since it has dedicated lines to it, this concern
didn’t affect the address decoder. In systems where the video RAM (or other
shared memory) is mapped to the normal memory address space, the address
decoder has to make sure the read-data-ready signal is correctly routed back.

• Just because a component communicates with the CPU via its address and
data bus, doesn’t necessarily mean it is a memory element: it could be a
memory-mapped I/O peripheral. And the whole point of a peripheral is to
interface with the wide world outside the CPU; so these components will have
some backpane connections that need to refer to parts of our circuit that have
nothing to do with address decoding.

Our design will be driven by the first requirement; we will come back to the
other two later in this chapter, but their implementation will involve only fairly

14.2 A whirlwind intro to Template Haskell 305

localized changes. We address sharing by assigning identity to components: when
a component is declared, we get a handle pointing to it; that handle is then used
when defining its place in the address space:

memRead = memoryMap_ _memAddr _memWrite $ do
font <- romFromVec (hexDigits ++ repeat 0 :: Vec 0x200 Byte)
ram <- ramFromFile (SNat @(0x1000 - 0x200)) programFile

from 0x000 $ connect font
from 0x200 $ connect ram

The point, of course, is that this allows us to write our motivating example as
the following:

dataIn = memoryMap_ addr dataOut $ do
ram <- ram0 (SNat @0x1000) -- 0-initialized RAM

from 0x7000 $ connect ram
from 0xf000 $ connect ram

And why the name memoryMap_, with an underscore tacked on? That is to mark
it as “memoryMap without any backpane connections”, similar to how traverse_ is
“traverse without any result”. We will stick to these backpane-less versions of all
our combinators until later in the chapter when we get to implementing backpane
connections.

14.2 A whirlwind intro to Template Haskell

Before we move on to the implementation of memoryMap_, there is one more piece of
the puzzle we have to discuss: Template Haskell. As much as it would be desirable
to be able to write the code from the previous examples, our final version will
instead look like the following:

memRead = $(memoryMap_ @Addr [|_memAddr|] [|_memWrite|] $ do
font <- romFromVec (SNat @0x0200)

[|hexDigits ++ repeat 0 :: Vec 0x200 Byte|]
ram <- ramFromFile (SNat @(0x1000 - 0x200)) [|programFile|]

from 0x000 $ connect font
from 0x200 $ connect ram)

It turns out, as of the writing of this book, the Clash compiler is unable to
handle complicated, recursive definitions of signals. We don’t have this problem in

Chapter 14 Address decoding and memory maps306

other parts of this book, because all our other complex code lives inside the signal
processing functions; but here, we are not defining the combinational part of a
circuit (inside a Mealy machine or otherwise), we are defining the circuit itself.1
Instead of generating Signal values, we are forced to generate the code of the circuit
we want – and this is where Template Haskell comes into play.

For readers who haven’t worked with Template Haskell before, the expected
reactions are “ugh, what’s with these weird [| |] brackets?!” and “how is that
$(memoryMap_ ...)$ even valid Haskell syntax?!”. In this section, we very briefly
review the small subset of Template Haskell that we will use in this chapter.

14.2.1 Expressions

Haskell expressions are represented by the type Language.Haskell.TH.Exp2. As one
would expect, its constructors correspond to the term formers of Haskell; for exam-
ple, if we have fun :: Exp and arg :: Exp, then AppE fun arg :: Exp corresponds
to the Haskell term that is the application of the fun expression to the arg expres-
sion. In this chapter, we will never take expressions apart, and will only build them
using VarE, ListE and LetE; as their names suggest, these correspond to variable
occurrences, list literals, and let expressions, respectively. Everything else will be
user-supplied, or static templates.

14.2.2 Splicing and quoting

The $(...) syntax instructs the compiler to splice the results of an Exp-valued compu-
tation into our source code. So when we write memRead = $(memoryMap_ foo bar),
the expectation is that memoryMap_ is a function that, after application, results in
the Exp that represents the term muxA [...]. The basic operation on Exp, of course,
is to make larger expressions from smaller ones, according to the term formers of
Haskell.

Note that we’ve been describing the process in terms of “computations resulting
in an Exp result”; that is because the Template Haskell macros like memoryMap_ are
all run in a monad called Q (for “code quotation”). In our code, we are going to
use only a single effect provided by Q, and that is generating fresh, unique variable
names with the newName function. In its full generality, Q provides a lot of other
facilities for compile-time inspection, but we are not going to discuss those. Since
everything is in the Q monad, the Language.Haskell.TH module also exports handy

1See https://github.com/clash-lang/clash-compiler/issues/1536 for the very long thread in the Clash
bug tracker for details.

2We will omit the Language.Haskell.TH namespace qualifier for the rest of this chapter, and assume
that the Template Haskell support library has been imported unqualified.

https://github.com/clash-lang/clash-compiler/issues/1536

14.2 A whirlwind intro to Template Haskell 307

type synonyms for quoted representations, for example ExpQ for Q Exp; similarly, we
have varE :: Name -> ExpQ beside the raw constructor VarE :: Name -> Exp.

Pairing up with the yin that is $(...) is the yang of the quoting bracket [| ... |].
As the former takes a computation and splices its result into the code, the latter takes
a Haskell term and gives back its Exp representation. In the example we’ve seen,
programFile is the Haskell term referring to the parameter of logicBoard, and
[|programFile|] is an expression of type ExpQ that returns the Exp representation
of it.

Here is an example of Haskell code that uses both $(...) and [| ... |], which
comes from the code we will write later in this chapter, using another variable
maskeds :: [ExpQ]:

masked = [| muxA $(listE maskeds) |]

If we have a program that processes the memory map description and generates
the list of expressions maskeds:

maskeds =
[[| enable (register False $ isJust <$> $addr) $rd |]
| (addr, rd) <- components
]

then the expression generated by outwill be exactly what we wrote by hand initially.

14.2.3 Declarations

Our original hand-written code for the CHIP-8 is not a single definition of memRead;
instead, it is a whole set of variable definitions, allowing us to use ramAddr both as
the address line going into the blockRamFile as well as its multiplex selector. These
definitions, and other possible declarations, are represented in Template Haskell as
the Dec (and corresponding DecQ) type. Declarations are quoted using the syntax
[d| ... |]. A single such quotation can contain a whole list of declarations, so
its type is Q [Dec]. The only declarations we’ll need here are variable definitions,
which are written as [d| $(varP v) = $someExpr |], where v is the newly bound
variable name (as created by newName), varP creates a variable pattern, and someExpr
is, of course, the right-hand side of the definition.

The following example code assembles the CHIP-8 memory map from fragments
containing the address decoding logic, the component creation, and driving the
final read data multiplexer. Its aim is to illustrate all the Template Haskell concepts
introduced here, without doing any complicated processing yet.

Chapter 14 Address decoding and memory maps308

chip8Example :: ExpQ -> ExpQ -> ExpQ -- (1)
chip8Example addr wr = do

-- (2)
addrs@[addr1, addr2] <- replicateM 2 $ newName "addr"
let addrDecs =

[d| $(varP addr1) = enable ($addr .< 0x200) $addr
$(varP addr2) = enable (0x200 <=. $addr) ($addr - 0x200)

|]

-- (3)
rds@[rd1, rd2] <- replicateM 2 $ newName "rd"
let rdDecs =

[d| $(varP rd1) = rom (hexDigits ++ repeat 0 :: Vec 0x200 Byte)
(fromJustX <$> $(varE addr1))

$(varP rd2) = packRam
(blockRamFile (SNat @(0x1000 - 0x200)) programFile)
(fromJustX <$> $(varE addr2))
(liftA2 (,) <$> $(varE addr2) <*> $wr)

|]

-- (4)
let maskeds =

[[| enable selected $(varE rd) |]
| (addr, rd) <- L.zip addrs rds
, let selected = register False $ isJust <$> $(varE addr)
]

-- (5)
decs <- addrDecs <> rdDecs
letE (pure <$> decs) [| muxA $(listE maskeds) |]

1. We write our macro as a function from the expressions holding the address
and write signals (_memAddr and _memWrite in the CHIP8 example). It might be
cleaner to use the type Exp -> Exp -> Q Exp, but at the use site in logicBoard,
we will want to pass [| ... |]-quoted expressions as the arguments, and
those have type ExpQ.

2. We create variable bindings for the addresses restricted for individual compo-
nents. For simplicity’s sake, in this example code we create both names addr1
and addr2 upfront.

3. We do the same for the read results of individual components. Note that the
definition of the components refers to addr1 and addr2. In our real implemen-

14.2 A whirlwind intro to Template Haskell 309

tation, the tricky part will be figuring out which restricted addresses to use
for which component. Here, it’s all hardcoded.

4. We create the masked versions of the component read-outs uniformly, by
applying enable (register False $ isJust <$> addr).

5. The total set of declarations is the union of the addresses and the component
reads. The type of [d| ... |] is Q [Dec], not [Dec] (since it can contain
other, effectful splices), or Q Dec (since one [d| ... |] quotation can contain
multiple declarations). However, letE expects a [Q Dec] as its first argument.
We bridge this impedance mismatch by first binding to decs (so at this point
we have decs :: [Dec]), and then turning each Dec element into a Q Dec by
mapping pure over the list.

We can see what the generated code is from GHCi, by using runQ and then
pretty-printing the result with Template Haskell’s ppr function:

Main> fmap ppr $ runQ $ chip8Example [|_memAddr|] [|_memWrite|]

Looking at the output, we can confirm that it matches our expectation in recov-
ering the original, hand-written CHIP-8 memory map:

let {addr_0 = enable (_memAddr .< 512) _memAddr;
addr_1 = enable (512 <=. _memAddr) (_memAddr - 512);
rd_2 = rom (hexDigits ++ repeat 0 :: Vec 512 Byte)

(fromJustX <$> addr_0);
rd_3 = packRam (blockRamFile (SNat @(4096 - 512)) programFile)

(fromJustX <$> addr_1) ((liftA2 (,) <$> addr_1) <*> _memWrite)}
in muxA [enable (register False $ (isJust <$> addr_0)) rd_2,

enable (register False $ (isJust <$> addr_1)) rd_3]

(The actual output of ppr is less readable, because every bound identifier is
printed with is fully qualified name. So <$> is rendered as Data.Functor.<$>, and
so on. We are omitting these qualifiers here for the sake of readability).

Looks great, so let’s try actually using it in logicBoard, by replacing our hand-
written definition of memRead with $(chip8Example [|_memAddr|] [|_memWrite|].
One constraint is that chip8Example has to be defined in a different module than
where we want to splice its result; if we define it right next to logicBoard in the
same module, we get the following GHC error message:

GHC stage restriction: chip8Example is used in a top-level splice, quasi-
quote, or annotation, and must be imported, not defined locally.

Chapter 14 Address decoding and memory maps310

Once moved somewhere else, we can indeed replace the hand-written definition.
This concludes our small Template Haskell tutorial. The rest of this chapter is about
using this facility to implement a nice declarative way of describing memory maps;
in other words, it concerns itself with compiling the user code into the right Template
Haskell fragments.

14.2.4 But what about Typed Template Haskell?

One shortcoming of using Template Haskell is that splicing a given, well-typed
ExpQ into a bigger expression may lead to a non-well-typed expression because the
larger context requires a different type. For a very banal example, imagine passing
[|True|] as the first argument to chip8Example: on its own, it is the quotation of a
valid Haskell expression, but it leads to the following output:

addr_0 = enable (True .< 512) True;

GHC typechecks the output of Template Haskell, so this will be detected; but
because it is the generated code that has a type error, the error will necessarily
be reported in terms of the generated code. And depending on how complicated
the expression generator program is, it might not be obvious which argument to
the generator is causing the problem. This difficulty increases even more when
debugging the generator itself.

GHC’s answer to these concerns is Typed Template Haskell, which enables
chip8Example to be typed as:

chip8Example
:: TExpQ (Signal dom addr)
-> TExpQ (Signal dom dat)
-> TExpQ (Signal dom dat)

In Typed Template Haskell, the typed quotation [|| True ||] has type
TExpQ Bool, so it cannot be passed as an argument in the TExpQ (Signal dom addr)
position.

Unfortunately, the rest of this chapter will not use Typed Template Haskell, for
two reasons:

• The address comparison needs (Num addr, Ord addr), while wrapping the
per-component addresses in register False requires an (NfDataX addr,
HiddenClockResetEnable dom) constraint; thus, the full type of chip8Example
would need to be:

14.3 A memory map DSL 311

chip8Example
:: (HiddenClockResetEnable dom, NFDataX addr, Num addr, Ord
addr)
=> TExpQ (Signal dom addr)
-> TExpQ (Signal dom dat)
-> TExpQ (Signal dom dat)

Unfortunately, at the time of writing this book, handling typeclass constraints
in Typed Template Haskell is an open problem.3

• Typed Template Haskell is an “all or nothing” affair: typed quotations are
only valid in typed splices, and vice versa. So even for the bits of our library
that don’t need typeclass constraints, we can’t use Typed Template Haskell
and then integrate nicely with the rest of the library, since the top-level splice
will be necessarily an untyped one.

14.3 A memory map DSL

The API we will create for defining memory maps is going to be monadic, to make it
easy to carry the handles of the created component to the points in the code where
they are connected to the memory address space:

do
bootRom <- romFromFile (SNat @0x0800) [|"bootRom.bin"|]
ram <- ram0 (SNat @0x1000)

from 0x0000 $ connect bootRom
from 0x1000 $ connect ram
from 0x2000 $ connect ram

Here, bootRom and ram are bound to the results of the two component builders;
the do-notation makes it seamless to pass them to later connect calls.

The above code also illustrates the three moving parts that need to come together
to make everything work out:

1. When a component is created, we need to remember the Clash code we will
need to generate (for example, a call to romFile), and we need to provide a
handle that identifies that particular component at later connect calls.

2. from restricts all connections in its body to be active only when the
current address matches the given interval. For example, in the

3See https://stackoverflow.com/a/65406350/477476

https://stackoverflow.com/a/65406350/477476

Chapter 14 Address decoding and memory maps312

from 0x0000 $ connect bootRom line, the bootRom is only connected to
the address range 0x0000 to 0x07ff. Where does the upper bound come from?
Note that we passed a (type-level) size argument to romFromFile. We will
use this to mark the bootRom handle as being addressed by a signal of type
Index 0x0800; and this means when we can use this information in the type
of connect bootRom, propagating the type information to its encompassing
from (or any other address matcher), which can use that to calculate the full
target address range.

3. When we connect a component, we add the restricted address to the set of
addresses that are connected to the given component. In other words, there
is always a “current most restricted address” for every point of our memory
map specification, and a given component’s address input will be collected
from these.

Below is the code we intend to generate from this example. Note that each from
call corresponds to the definition of a new, Maybe-valued signal; these signals are
collected per component, and then also used in the final output multiplexer. Of
course, we could have a connect call in the top level as well, so it is simpler to just
always suppose the type of the address is a Maybe-valued signal.

let rd1 = fmap unpack $ romFilePow2 "bootRom.bin"
(bitCoerce . fromJustX <$> compAddr1)

rd2 = blockRam1 NoClearOnReset (SNat @0x1000) 0
(fromJustX <$> compAddr2)
(liftA2 (,) <$> compAddr2 <*> wr)

addr1 = (from' @(Index 0x0800) 0x0000 =<<) <$> addr
addr2 = (from' @(Index 0x1000) 0x1000 =<<) <$> addr
addr3 = (from' @(Index 0x1000) 0x2000 =<<) <$> addr
compAddr1 = muxA [addr1]
compAddr2 = muxA [addr2, addr3]

in
muxA

[enable (register False $ isJust <$> addr1) rd1
, enable (register False $ isJust <$> addr2) rd2
, enable (register False $ isJust <$> addr3) rd2
]

Here, from' is the term-level workhorse function for matching continuous ad-
dress ranges, going from a larger space addr to addr', if the argument matches the
given range:

14.3 A memory map DSL 313

from'
:: forall addr' addr. (Integral addr, Ord addr, Integral addr',
Bounded addr')
=> addr -> addr -> Maybe addr'

from' base addr = do
guard $ addr >= base
let offset = addr - base
guard $ offset <= fromIntegral (maxBound :: addr')
return (fromIntegral offset)

Note that in this latest example, we create three matched addresses, and then
need to combine the second and the third one to get the effective address of the
second component. In the from 0x1000 $ connect ram line, we want to emit the
definition of addr2, and also, behind the scenes, remember that addr2 is one of the
possible address lines of the component identified by the handle ram; this is so that
later on, when we get to generating each component’s address signal, we can look
up all the address variables that go into compAddr2.

14.3.1 Implementation

The two main types that we will build our API around is Addressing, a monad in
which we describe addressing schemes; and Handle, which is created by declaring
memory components, and can be connected to address sub-ranges. Both Addressing
and Handle are parameterized by the address sub-range type, which, as we have
seen, is used by the interaction of from and connect. Without knowing yet the
representation of Addressing and Handle, looking at our latest example, we can
come up with the following desired API:

type Addressing addr a
instance Monad (Addressing addr)

type Handle addr

romFromFile :: SNat n -> ExpQ -> Addressing addr (Handle (Index n))
ram0 :: SNat n -> Addressing addr (Handle (Index n))
from :: addr -> Addressing addr' a -> Addressing addr a
connect :: Handle addr -> Addressing addr ()

In Addressing, we need to collect three kinds of output: standalone declarations
for things like rd and addr, a list of addresses per component for compAddr, and
a single global list of the masked component outputs to be put in the final muxA.
This suggests using a WriterT over the Q monad (we need the latter to come up
with the fresh names for rd1, rd2 etc.). We also need access to the write signal (for

Chapter 14 Address decoding and memory maps314

components like ram0), and the current restricted address signal. We can put these
two in a ReaderT, giving the following definition for Addressing:

newtype Addressing addr a = Addressing
{ runAddressing ::

ReaderT (Addr, Wr) (WriterT (DecsQ, Connections, [Component]) Q) a
}
deriving newtype (Functor, Applicative, Monad)

The addr type parameter is merely a phantom parameter because we can’t use
Typed Template Haskell; but at least we can use some type synonyms (all defined
as ExpQ) just to keep track of the role of each generated fragment:

type Addr = ExpQ -- Signal dom (Maybe addr)
type Wr = ExpQ -- Signal dom (Maybe dat)
type Component = ExpQ -- Signal dom (Maybe dat)

For Connections, we need an associative data structure that collects the per-
component addresses in such a way that its Monoid instance combines results rather
than overwriting them, as a Map Name [Addr] would do. Note that the Monoid
instance of [Addr] provides exactly the right operator for combining sub-results;
this suggests using a MonoidalMap (from the Monoidal Containers package):

import Data.Map.Monoidal as Map

type Connections = MonoidalMap Name [Addr]

Note that our code will crucially depend on the Addressing newtype only in-
heriting the Monad instance from its underlying representation, not the MonadWriter
instance. The fact that, under the hood, we are building up three collections is
an implementation detail, and we will write our combinators to populate the col-
lections properly; but we don’t want user code to break because, for example, an
out-of-scope name makes its way into the list of Components.

To see how this representation of Addressing works, we can write the compiler
that takes an addressing scheme, the input signals for the address and the data-out,
and generates a single Template Haskell expression corresponding to the result of
reading from the whole address space:

compile
:: Addressing addr ()
-> Addr
-> Wr
-> ExpQ

14.3 A memory map DSL 315

compile addressing addr wr = do
-- (1)
(decs, conns, outs) <- execWriterT $

runReaderT (runAddressing addressing) (addr, wr)

-- (2)
let compAddrs = [[d| $(varP nm) = muxA $(listE addrs) |]

| (nm, addrs) <- Map.toList conns
]

-- (3)
decs <- mconcat (decs:compAddrs)
letE (pure <$> decs) [| muxA $(listE outs) |]

1. We peel off all the layers of addressing, running it with the given address
and write signals. Note that we represent addresses as Maybe-valued signals
(where a Nothing value means the address doesn’t match the current address
sub-range), and of course the original address is always inside the outermost
(full) address range; we will take care of this in memoryMap_.

2. For each component’s connections, we generate its corresponding compAddr
definition by taking the combination of all its incoming addresses.

3. The rest of the code should be familiar from our Template Haskell orientation
example: we flatten the list of declarations, create our final output signal by
multiplexing all outputs, and put everything under a let.

The public entry point memoryMap_ calls compilewith two locally bound variables
for addr and wr; the purpose of this is to avoid generating large and redundant code
when the user supplies a complicated expression for any of the two arguments:

type RawAddr = ExpQ -- Signal dom addr

memoryMap_
:: RawAddr
-> Wr
-> Addressing addr ()
-> ExpQ

memoryMap_ addr wr addressing =
[| let addr' = Just <$> $addr; wr' = $wr

in $(compile addressing [| addr' |] [| wr' |])
|]

Chapter 14 Address decoding and memory maps316

We also have everything to implement from. In fact, from is just a special case
of address matching; in later chapters, we will add other matchers built in top of
matchAddr as the need arises.

matchAddr
:: ExpQ {- addr -> Maybe addr' -}
-> Addressing addr' a
-> Addressing addr a

matchAddr match body = Addressing $ do
nm <- lift . lift $ newName "addr"
let addr' = varE nm
ReaderT $ \(addr, wr) -> do

let dec = [d| $(varP nm) = ($match =<<) <$> $addr |]
runReaderT
(tell (dec, mempty, mempty) >> runAddressing body)
(addr', wr)

We use newName (from the underlying Q monad) to create a fresh name, and
want to bind it in a declaration to the result of applying the given matcher function
to the current address signal. The only complication comes from the fact that we
are changing types from Addressing addr to Addressing addr'. Hence, we can’t
run body using just local; instead, we need to peel off the ReaderT layer, emit the
definition of nm, and then re-enter ReaderT with the address signal corresponding
to the result of the match.

Note that the bulk of matchAddr is written in ReaderT _ (WriterT _ Q), not in
Addressing; we merely wrap it into the latter at the outermost layer. This pattern
will repeat itself in all our combinator definitions, and the reason for it is that
Addressing is our public interface, providing no direct way to accessing MonadReader,
MonadWriter or Q effects. In the implementation, we can do all these by relying on the
representation of Addressing, and using the newtype constructor of Addressing to
shrink-wrap it before delivery. User code has no access to the newtype constructor
unless we export it, ensuring this safety barrier.

Given matchAddr, we write from by using from' as the matcher. We need to splice
both the result type and the start address into the matcher fragment; however, we
have these not as quoted expressions, but as bona fide, compile-time values. Luckily,
Template Haskell provides the lift function for reifying values into expressions;
and for reifying types, we have liftTypeQ from the lift-type package. The extra
typeclass constraints on from come from the constraints of lift and liftTypeQ.4

4GHC arranges behind the scenes for Typeable to always hold for any concrete type; however, on
the term level, only first-order values can be unquoted, so the Lift constraint is a real restriction on the
types of addresses we can work with.

14.3 A memory map DSL 317

import LiftType
import Type.Reflection (Typeable)
import qualified Language.Haskell.TH.Syntax as TH

from
:: forall addr' addr a. (Typeable addr', Lift addr)
=> (Integral addr, Ord addr, Integral addr', Bounded addr')
=> addr
-> Addressing addr' a
-> Addressing addr a

from base = matchAddr [| from' @($(liftTypeQ @addr')) $(TH.lift base) |]

In fact, GHC can insert the TH.lift calls for us, whenever we refer from a
fragment to something in the scope outside the fragment, so we can rewrite the
above in more compact form as:

from base = matchAddr [| from' @($(liftTypeQ @addr')) base |]

14.3.2 Representing components

Next, we think about how to represent component handles. In this section, we will
concentrate on a single memory component type: block RAM initialized from a file.
We use this because it illustrates both the handling of compile-time arguments (to
pass the RAM contents file name) and writable components.

ramFromFile
:: SNat n
-> ExpQ {- FilePath -}
-> Addressing addr (Handle (Index n))

Note that the file path is passed as a quoted expression instead of a compile-time
FilePath value. If we passed a value, and used TH.lift to reify that, it would
mean that the filename is determined at compile time. However, we have seen in
the Brainfuck and CHIP-8 chapters that it can be useful for high-level simulation if
we can take the filename as a runtime argument set from the command line. We
wouldn’t want to recompile our simulator every time we want to test with a different
memory image! We solve this by passing a fragment instead of a value, since that
fragment can then be just a variable.

Another thing worth highlighting is that when a component is created, its ad-
dress type (Index n in this case) has no relation to the current address space addr.
They will need to be the same when we get to connecting the component, but there
can be any number of matchAddr calls between the two ensuring this holds. Sharing

Chapter 14 Address decoding and memory maps318

components in the address map only makes sense if the same component can be
connected to multiple address sub-spaces.

Inside ramFromFile, we need to emit the definition of the value read from the
component, as in the previous examples:

rd2 = blockRamFile size fileName
(fromJustX <$> compAddr2)
(liftA2 (,) <$> compAddr2 <*> wr)

We don’t know yet what the definition of compAddr2 will be: that will only be
available once we have collected all later connect calls. But that’s not a problem, as
long as we have the name compAddr2 at hand. When we make a new component,
we will generate both the rd and the compAddr names, but only define the former.
The latter will be defined in compile, from the collected address signals. Of course,
for the signals to go to the right place, we need to remember (in the Handle) the
generated name. Similarly, even though we define rd2 here, we record it in the
Handle so that connect can emit its masked version as one of the alternatives of the
final muxA:

data Handle addr = Handle Name Name

ramFromFile size fileName = Addressing $ do
rd <- lift . lift $ newName "rd"
addr <- lift . lift $ newName "compAddr"
(_, wr) <- ask
let decs = [d| $(varP rd) = packRam (blockRamFile size $fileName)

(fromJustX <$> $(varE addr))
(liftA2 (,) <$> $(varE addr) <*> $wr)

|]
tell (decs, Map.singleton addr mempty, mempty)
return $ Handle rd addr

In the type of connect, we require the Handle address type to match the current
address type, thereby ensuring that the current addr can be passed as one possible
address input during compile:

connect
:: Handle addr
-> Addressing addr ()

connect (Handle rd compAddr) = Addressing $ do
(addr, _) <- ask
let masked = [| enable (delay False $ isJust <$> $addr) $(varE rd) |]
tell (mempty, Map.singleton compAddr [addr], [masked])

14.3 A memory map DSL 319

This short definition packs quite a punch: first, it creates an expression fragment
that corresponds to taking the given component’s read-out value if that component
was addressed through this particular address range; then, it adds the current address
to the component’s list of addresses (recall that we are collecting results into a
MonoidalMap, so multiple connect calls at different sites can build up the list keyed
to a given compAddr); and finally, the masked read-out value is added to the list of
all read-outs that goes into the output multiplexer.

14.3.3 More components

We can implement romFromFile similar to ramFromFile:

romFromFile
:: SNat n
-> ExpQ {- FileName -}
-> Addressing addr (Handle (Index n))

romFromFile size fileName = Addressing $ do
rd <- lift . lift $ newName "rd"
addr <- lift . lift $ newName "compAddr"
let decs = [d| $(varP rd) = fmap unpack $ romFilePow2 $fileName

(bitCoerce . fromJustX <$> $addr)
|]

tell (decs, Map.singleton addr mempty, mempty)
return $ Handle rd addr

In fact, it is so similar that it begs to be unified. The general form of a read-write
component (with no backpane signals, hence the underscore suffix of the name) is
one that given the effective component-specific address and write signals, returns
the code fragment that creates the read-out value:

readWrite_
:: (Addr -> Wr -> ExpQ)
-> Addressing addr (Handle addr')

readWrite_ component = Addressing $ do
rd <- lift . lift $ newName "rd"
addr <- lift . lift $ newName "compAddr"
(_, wr) <- ask
let decs = [d| $(varP rd) = $(component (varE addr) wr) |]
tell (decs, Map.singleton addr mempty, mempty)
return $ Handle rd addr

We can recover ramFromFile and romFromFile in a straightforward way:

Chapter 14 Address decoding and memory maps320

romFromFile size fileName = readWrite_ $ \addr _wr ->
[| fmap unpack $ romFilePow2 $fileName

(bitCoerce . fromJustX <$> $addr)
|]

ramFromFile size fileName = readWrite_ $ \addr wr ->
[| packRam (blockRamFile size $fileName)

(fromJustX <$> $addr)
(liftA2 (,) <$> $addr <*> $wr)

|]

And for good measure, we will add two more: romFromVec and ram0, the latter
standing for “0-initialized RAM”. For the former, the same consideration applies to
the vector of elements as for the filename argument of ramFromFile and romFromFile:
by taking a fragment instead of a compile-time value, we allow for simulations to
calculate the ROM contents at runtime.

romFromVec
:: SNat n
-> ExpQ {- Vec n dat -}
-> Addressing addr (Handle (Index n))

romFromVec size xs = readWrite_ $ \addr _wr ->
[| rom $xs (bitCoerce . fromJustX <$> $addr) |]

ram0
:: SNat n
-> Addressing addr (Handle (Index n))

ram0 size = readWrite_ $ \addr wr ->
[| blockRam1 NoClearOnReset size 0

(fromJustX <$> $addr)
(liftA2 (,) <$> $addr <*> $wr)

|]

14.4 Backpane connections

Next, we extend our library with support for components with backpane connec-
tions. What we mean by that is a component that has pins on two sides: the
CPU-facing side contains the address and data pins, and its backside contains pins
facing the outside world.

For a concrete example, imagine a peripheral adapter connected to sixteen push-
buttons that can be toggled by button presses. In this case, the adapter would

14.4 Backpane connections 321

implement debouncing each button, maintain its own internal 16-bit toggle state,
and present it as two bytes mapped to two particular read-only memory addresses:

CPU

Address

Driver
Data

Buttons

Another example would be if the CHIP-8’s video buffer was mapped to the main
address space. If we abstract the complete video system as a single component, its
backpane connection is the VGA signal itself:

CPU

Address

Video
Data

VGA

We can describe an addressing scheme that includes the first example with the
tools we already have:

toggleBtnDriver
:: (HiddenClockResetEnable dom)
=> Signal dom (BitVector 16)
-> Signal dom (Maybe (Index 2))
-> Signal dom (Unsigned 8)

toggleBtnExample :: Addressing (Unsigned 16) ()
toggleBtnExample = do

ram <- ram0 (SNat @0x1000)
btns <- readWrite_ @(Index 2) $ \addr _ ->

[| toggleBtnDriver btns addr |]

from 0x0000 $ connect ram
from 0xf000 $ connect btns
from 0xf800 $ connect btns

This works because like any other circuit, toggleBtnDriver consumes its back-
pane input signal as an argument; to instantiate it, we simply apply it on btns
alongside the collected component-specific address addr.

The second example, however, requires some changes to our infrastructure. The
reason for this is that these backpane outputs must have a way of getting out of
the memoryMap. We can’t directly bind them to return values of readWrite, since

Chapter 14 Address decoding and memory maps322

readWrite runs while we build our internal Addressing representation, whereas the
signals to be returned will only exist once compile (as called by memoryMap) finishes
assembling its fragment.

Before we actually solve this, let’s look at what the end result should be: one
possible version of the code to generate. Continuing the second example above,
suppose we have the following video driver component (omitting constraints on
dom for simplicity):

video
:: Signal dom (Maybe (Index 4096))
-> Signal dom (Maybe (Unsigned 8))
-> (Signal dom (Unsigned 8), VGAOut dom 8 8 8)

This gives us 4096 individually addressable bytes of video RAM, in a format
that almost looks like normal RAM. The difference becomes clear if we write out
the code that we would generate if video were passed to readWrite_:

let rd1 = video compAddr1 wr
addr1 = ...
compAddr1 = muxA [addr1]

in
muxA

[enable (register False $ isJust <$> addr1) rd1
]

This is clearly wrong: instead of the read-out signal from the video RAM, rd1 is
now bound to the pair of signals coming out of video; moreover, the final result of
this expression is only whatever byte is read out from the video RAM, with no way
to refer to the VGA backpane output.

What we want to do is to be able to write code like the following:

(addrOut, dataOut) = cpu (dataIn .|> 0)

(dataIn, vgaOut) = $(memoryMap [|addrOut|] [|dataOut|] $ do
(vid, vga) <- readWrite @(Index 4096) $ \addr wr ->

[| video $addr $wr |]
from 0xc000 $ connect vid
return vga)

And have it generate code that binds dataIn to what comes out of the memory map,
and vgaOut to the backpane of the vid component:

14.4 Backpane connections 323

(dataIn, vgaOut) =
let addr = Just <$> addrOut

wr = dataOut
(rd1, vga) = video compAddr1 dataOut
addr1 = (from' @(Index 4096) 0 =<<) <$> addr
compAddr1 = muxA [addr1]

in (muxA
[enable (register False $ isJust <$> addr1) rd1
] .<| 0

, vga
)

As we can see, the differences compared to our previous version are minor, but
important:

• For each component (video in this case), its result is a pair consisting of the
read output signal and the backpane connections.

• When a component is created, its result pair is bound to its rd variable (as
before) and a new variable holding the backpane outputs.

• The final expression generated is similarly a pair of the muxA output and the
result of the Addressing description.

The first two of these changes are straightforward; the real question is how to
tie the code generated for the component video to the return vga statement at the
end of our memory map description. The solution is similar to the representation
of Handle: whenever a component with a backpane is created, its declaration will
bind a fresh name, and that name is stored in the Result returned. Then, in compile,
we take the expression from the Result and splice it into the second coordinate of a
pair:

data Result = Result ExpQ

compile
:: Addressing addr Result
-> Addr
-> Wr
-> ExpQ

compile addressing addr wr = do
(Result x, conns, outs) <- execWriterT $

runReaderT (runAddressing addressing) (addr, wr)
...
letE (pure <$> decs) [| muxA $(listE outs), $x |]

Chapter 14 Address decoding and memory maps324

Indeed, this allows us to write a version of readWrite for components with
backpane outputs, like our video example:

readWrite
:: (Addr -> Wr -> Component)
-> Addressing addr (Handle addr', Result)

readWrite component = Addressing $ do
...
result <- lift . lift $ newName "result"
let decs = [d| ($(varP rd), $(varP result)) =

$(component (varE addr) wr)
|]

tell (decs, Map.singleton addr mempty, mempty)
return (Handle rd addr, Result (varE result))

And this degenerates to readWrite_ nicely, as expected, by using a single ()
value as the backpane, and dropping the Result:

readWrite_
:: (Addr -> Wr -> Dat)
-> Addressing addr (Handle addr')

readWrite_ component = fmap fst $ readWrite $ \addr wr ->
[| ($(component addr wr), ()) |]

However, compile as written can only handle the case of exactly one Result.
What if we want to return none, do we need an almost duplicate implementation
for compile_? And what if we have multiple components with backpane outputs,
how would we return two or more Results from one memoryMap?

We can generalize in the number of Results by making a typeclass for Backpane
results that is closed under products. This works out because Template Haskell
fragments themselves are closed under products, in the obvious way: a pair of
fragments can be turned into a fragment that is the (,) constructor applied on both
fragments.

class Backpane a where
backpane :: a -> ExpQ

instance Backpane () where
backpane () = [|()|]

instance Backpane Result where
backpane (Result e) = e

14.4 Backpane connections 325

instance (Backpane a1, Backpane a2) => Backpane (a1, a2) where
backpane (x1, x2) = [| ($(backpane x1), $(backpane x2)) |]

instance (Backpane a1, Backpane a2, Backpane a3) =>
Backpane (a1, a2, a3) where
backpane (x1, x2, x3) =

[| ($(backpane x1), $(backpane x2), $(backpane x3)) |]

It’s truly unfortunate for situations like this that Haskell’s tuple types are not
inductively defined; we have to handle two-, three-, etc. tuples in as many instances.
In this book, we won’t need more than three-tuples; of course, the instances for
larger tuples follow naturally.

We can now rewrite compile to work with any Backpane result:

compile
:: (Backpane a)
=> Addressing addr a
-> Addr
-> Wr
-> ExpQ

compile addressing addr wr = do
...
letE (pure <$> decs) [| muxA $(listE outs), $(backpane x) |]

Giving us the public entry points memoryMap and memoryMap_ as before:

memoryMap
:: forall addr a. (Backpane a)
=> Addr
-> Wr
-> Addressing addr a
-> ExpQ

memoryMap addr wr addressing =
[| let addr' = $addr; wr' = $wr

in $(compile addressing [| addr' |] [| wr' |])
|]

memoryMap_
:: forall addr dat. ()
=> Addr
-> Wr
-> Addressing addr ()
-> ExpQ

memoryMap_ addr wr addressing = [| fst $(memoryMap addr wr addressing) |]

Chapter 14 Address decoding and memory maps326

This completes the implementation of backpane outputs. Before we move on
to the next section, however, it is worth revisiting the video example from earlier.
Suppose we are building a computer with a memory-mapped video buffer, and
we would like to write a high-level simulator that interprets video RAM writes by
drawing into an SDL texture. In the CHIP-8, we implemented exactly this, and it
crucially depended on splitting the video system off the main logic board. But if we
were writing our memory map as in the example, that means the video system is
part of the main logic board, its connections tangled up with other internal signals.

Instead, we can add a new kind of component that is not really a component,
merely a way of hooking an external read signal into part of our address space, by
forwarding the address and write signals directly into the backpane:

CPU

Address

Conduit
Data

External address

External data

The implementation is straightforward: we use readWrite with a component
that simply returns the external read signal, and the current address and write
signals.

conduit
:: forall addr' addr. ()
=> ExpQ
-> Addressing addr (Handle addr', Result, Result)

conduit rdExt = do
(h, Result x) <- readWrite $ \addr wr -> [| ($rdExt, ($addr, $wr)) |]
return (h, Result [| fst $x |], Result [| snd $x |])

We can rewrite our previous example using conduit to expose the video RAM
address and write signals to the rest of the circuit, or to the simulator:

(addrOut, dataOut) = cpu (dataIn .|> 0)
(dataIn, (vidAddr, vidWrite)) = $(memoryMap [|addrOut|] [|dataOut|] $ do

(vid, vidAddr, vidWrite) <- conduit @(Index 4096) [|vidRead|]
from 0xf000 $ connect vid
return (vidAddr, vidWrite))

14.5 Access contention 327

14.5 Access contention

As we have seen in the previous chapter, when a memory element is shared between
the CPU and some peripherals, sometimes memory access requests from the CPU
cannot be fulfilled immediately. In a complex address space, at any given moment
some components might be preempted while others are available for immediate
access.

In the CHIP-8 chapter, we used a simple way of handling this situation by using
Maybe to model availability. We can use the same approach here. Let’s take our latest
example and build a bit more code around it, to show the exact types of vidAddr,
vidWrite and vidRead:

boardWithExternalVideo
:: Signal dom (Maybe (Unsigned 8))
-> (Signal dom (Index 4096), Signal dom (Maybe (Unsigned 8)))

boardWithExternalVideo = (vidAddr, vidWrite)
where
(addrOut, dataOut) = cpu (dataIn .|> Just 0)
(dataIn, (vidAddr, vidWrite)) = $(memoryMap [|addrOut|] [|dataOut|]
$ do

(vid, vidAddr, vidWrite) <- conduit @(Index 4096) [|vidRead|]
from 0xf000 $ connect vid
return (vidAddr, vidWrite))

This works, because memoryMap is agnostic about the type on the data bus, as
long as it is consistent between the components. However, what happens if we now
want to add a piece of RAM to the start of the address space?

(dataIn, (vidAddr, vidWrite)) = $(memoryMap [|addrOut|] [|dataOut|]
$ do

ram <- ram0 (SNat @0x8000)
(vid, vidAddr, vidWrite) <- conduit @(Index 4096) [|vidRead|]

from 0x0000 $ connect ram
from 0xf000 $ connect vid
return (vidAddr, vidWrite))

The problem here, is that we don’t want to store Maybe values in the RAM –
instead, since this RAM is an internal component with no other connections, and
thus, no way of having contention, we want to wrap the values read from it in a
Just constructor.

Since a Handle is represented by the names of its read-out and address variables,
we can make a transformed Handle by creating a new variable for the former:

Chapter 14 Address decoding and memory maps328

mapH :: ExpQ -> Handle addr' -> Addressing addr (Handle addr')
mapH f (Handle rd compAddr) = Addressing $ do

rd' <- lift . lift $ newName "rd"
tell ([d| $(varP rd') = $f <$> $(varE rd)|], mempty, mempty)
return $ Handle rd' compAddr

This allows us to change our example so that the value read from ram0 is always
Just-wrapped:

(dataIn, (vidAddr, vidWrite)) = $(memoryMap [|addrOut|] [|dataOut|]
$ do

ram <- mapH [|Just|] =<< ram0 (SNat @0x8000)
...

And what about the other direction, i.e. the CPU explicitly saying “I have no
need for memory access at the moment”? Again, we can model that as a Maybe – this
time on the address line. A Nothing address will simply not match any components:

matchJust
:: Addressing addr a
-> Addressing (Maybe addr) a

matchJust = matchAddr [| id |]

Note that in both cases of wrapping the address signal and the read-out signal in
an extra layer of Maybe, the internal representation of address sub-spaces and read
results is already a Maybe, but the two layers mean completely different things:

• A Nothing address, internally, means that the current address, whatever it is,
does not match the given address sub-space. A Just Nothing address, on the
other hand, means the current address sub-space is of type Maybe a, and the
current address is in that subspace.

• A Nothing read-out value means no components match the current address.
Real hardware usually has no way of detecting this – basically, some circuit-
dependent bogus value will always be on the data bus. We can model that
easily by applying fromMaybe dummyValue on the output of the memory map-
per.

• A Just Nothing read-out value means access to the addressed component was
pre-empted. This is a situation the CPU needs to handle. In a real hardware,
a separate signal line tells the CPU to wait for the memory to be ready. Of
course, this separate line is not raised if no component is selected. Due to this,
if we are modeling CPU stalling with Maybe, we should make sure the default
dummyValue is Just some value.

14.6 Summary 329

Overall, the details of how memory access contention is modeled depends on
the design of the whole system. Instead of building a specific solution into the
memoryMap DSL, we have seen how the mapH combinator can be used to implement
specific designs.

14.6 Summary

• When multiple components are attached to the same address and data bus,
there is some mapping of address sub-spaces to components.

• Since implementing such mappings is highly regular, we can librarize it. Due
to technical issues ruling out some of the alternatives, our weapon of choice
here is Template Haskell.

• We created a monadic API where the effects are declaring components, enter-
ing address sub-spaces, and connecting components. Because one component
can appear under multiple address ranges, observable sharing is necessary.

• In this chapter, we added code for creating RAM and ROM components, and
mapping them to contiguous address ranges. We can also add an escape
hatch for hooking external components to the address map with the conduit
combinator. In later chapters, we will expand this toolkit as needed.

15Intel 8080
In this chapter, we build a CPU that is machine code compatible with the Intel 8080
microprocessor. In the next two chapters, we will use it to build replicas of two very
different machines that were both originally using the real Intel 8080: the Space
Invaders arcade video game machine, and the Compucolor II home computer.

15.1 History

The 8080 debuted in 1974, as the second eight-bit microprocessor product of Intel.
For a brief time, it was one of the focal points of the personal computer revolution,
with the Altair 8800 kit computer spawning multiple lines of computers based on
its S-100 bus, running the CP/M operating system. However, in 1976 the Zilog Z80
arrived: created by a group mostly spun off from Intel, it was binary backwards-
compatible with the 8080, with more registers, more instructions, easier-to-interface
interrupt system and power requirements, and just plain faster. It didn’t take long
for the Z80 (and the MOS 6502, coming from a different lineage) to overtake the
8080 in the home microcomputer market.

So why build an Intel 8080 instead of a Zilog Z80? While the Z80 ultimately won
out over the 8080, there are still important retrocomputers based on it. And since a
reductive view of the Z80 is that it is two copies of the 8080 register set, with some
new instructions and new interrupt logic, we can do more depth and less breadth
in this chapter, and leave the expansion into a full Z80 as an exercise for the reader.

15.2 Veracity

When working on the CHIP-8, we started with an overview of the logical parts
of the machine; however, since the original only existed virtually, these parts were
mostly demarcated by our need to decompose the problem of describing a complete
machine into more manageable parts.

Not so with the Intel 8080. The original was a physical standalone piece of
hardware in a 40-pin DIP package. Designing and building a real computer using

331

Chapter 15 Intel 8080332

the 8080 means creating a circuit that has 40 connectors in the right layout com-
municating with the CPU. It is important to be upfront about our intentions here:
the aim in this chapter is not to produce a drop-in replacement that could then be
synthesized onto an FPGA with 40 GPIO ports and then hooked into an existing
physical computer.

Instead, we will build a CPU that is binary compatible with the 8080 machine
code instruction set, and that has comparable I/O capabilities that we will be able
to take 8080-based machines and replicate them to be firmware- and software-
compatible with the originals. Crucially, we want to build not just the CPU, but the
whole machines in Clash; and so for input and output types, we will use whatever
is convenient in Clash, and not necessarily in hardware.

Another question is timing accuracy. Even with a pin-compatible drop-in re-
placement, it is not necessarily a given that everything will happen with the same
timings as a real Intel 8080. On the other hand, it is possible, and makes sense for
certain applications, to build a non-drop-in-compatible implementation that still
adheres to the original timings.

Timing accuracy can also mean different things in different contexts. At the
lowest level, remembering that the clock is just an abstraction, we have parameters
like how many nanoseconds the outputs lag behind the clock edges. In a fully
synchronous circuit, like everything we build in Clash, we will not care about this
level at all.

One level up, we have clock cycle-tied timings: the externally observable be-
havior of the CPU at every rising and falling clock edge. For example, fetching
and executing a given instruction might take 6 clock cycles, with the address bus
showing the program counter by the falling edge of the first cycle and keeping it
like that for the next 2 cycles, reading the data bus contents at the rising edge of
the second cycle, then changing the address bus and the data bus, and asserting the
write-enable output, by the third falling edge. If we simplify the handling of rising
and falling clock edges to just “inputs at start of a clock cycle” and “outputs at end
of a clock cycle”, this is the level of accuracy that is within reach from Clash.

Then one level further up, we have instruction execution length, as measured in
cycles. This means the same program will run for the same time on our replica as
it does on a real CPU. This level of accuracy is commonly achieved by even naïve
software emulator implementations.

So what level of timing accuracy is desirable?
On one hand, the more the better: a more accurate replica implementation

not only means we can connect more original peripherals, but also that software
written for the original machine, that was written to exploit the low-level details of
the hardware, will run correctly. At the extreme end, we have software produced by
the demo scene: programs that are written with the explicit purpose of squeezing

15.3 Interface 333

the last possible drops of performance from a given limited hardware platform, by
using in-depth knowledge of the target computer often surpassing even the original
designers.

On the other hand, the more timing leeway we leave for ourselves, the easier our
task becomes. As we will see in chapter 17, the Space Invaders arcade box runs fixed
software that is written to use interrupts to do all time-dependent computations
such as animations and updating the game state. For such a computer, it makes no
observable difference even if the CPU takes longer or shorter to execute instructions,
as long as it is “fast enough” to finish one interrupt-triggered procedure by the
time the next interrupt comes. To use an analogy, the Pong game from chapter 9
runs the same if the clock speed is changed from 25 MHz to 40 MHz to produce
800 × 600 video instead of 640 × 480, because the game is updated 60 times per
second in both cases. On the other hand, as we will see, the Compucolor II’s disk
drive is carefully tuned to the CPU speed, using cycle-counted busy loops in the
disk accessing functions.

In this chapter, we will not care about timing accuracy at all. Our instructions,
by and large, will run in fewer cycles than the original, so we could improve that by
padding the microcode. Cycle accuracy should also be achievable by reorganizing
the microcode slightly. However, there is still the elephant in the room: to avoid
dealing with multiple clock domains, we run everything, including the CPU, at
the pixel clock’s rate. So while the real Intel 8080 could only run at about 2 MHz
(depending on the model), in the Space Invaders machine we will run our core at
25 MHz to produce video at 640 × 480 resolution at 60 frames per second. We will
return to this question in the Compucolor II chapter.

15.3 Interface

The real Intel 8080 has 40 pins. Four of them provide the chip with power, and two
are clock signals, leaving 34 pins to our interest:

• RESET (active low) changes the program counter’s value to 0x0000 and starts a
new fetch, but otherwise keeps internal register values.

• Memory I/O consists of 16 ADDRESS and 8 DATA lines with an active-low WR to
indicate memory writes. There is also a DBIN pin to signal memory reads.

• A pair of input HOLD and output HLDA pins for memory bus control. If HOLD is
high, the CPU disconnects from the address and data buses to allow peripher-
als to do direct memory access. HLDA is the acknowledgment signal from the
CPU that it has done so.

Chapter 15 Intel 8080334

• A pair of input READY and output WAIT pins for memory access preemption:
as long as READY is held low, the processor stalls on memory access, and this
stalling is indicated by WAIT going high.

• The INT input triggers an interrupt. Since interrupts are the big new feature of
the Intel 8080 compared to previous chapters, we will go into more detail on
it below. The INTE output pin is high if the CPU has interrupts enabled, i.e. if
it is accepting interrupts.

• The remaining single SYNC pin is used to expose a so-called status word on the
data bus. When SYNC is high, the output on the DATA bus is not a byte to be
written to memory; instead, each of its output bits takes on a meaning of its
own.

To understand some of these status word bits, we need to do a bit of a detour into
the concept of the confusingly named “machine cycles” as used by the Intel 8080
documentation. A “machine cycle” is not a single clock cycle; rather, it is multiple
clock cycles that correspond to a certain phase of executing a given instruction. For
example, the WO bit is low if the “current machine cycle” is writing to memory;
but since the status word shares pins with the data bus, the data bus cannot also
contain the byte to be written on the same clock cycle. The actual write (together
with setting WR) will happen in a later clock cycle that still belongs to the current
“machine cycle”.

Keeping this in mind, the meaning of the various bits of the status word are as
follows:

• INP and OUT: Instead of memory, an I/O peripheral should be used for the read
(on DBIN) or write (on WR) in the current machine cycle. The 8080 can address
256 I/O ports by putting the port number instead of a memory address on
both the low and the high 8 bits of the address bus. We will look into I/O
ports in more detail below.

• WO: The current machine cycle is writing to memory to an I/O port.

• MEMR: The current machine cycle is reading from memory.

• INTA: Acknowledgement of the INT interrupt request. As we will see, this is
used for much more than a simple notification.

• HLTA: The CPU has executed a HALT instruction and is now in the halt state.

• STACK: The address bus contains the stack pointer’s value.

• M1: The current machine cycle is the fetching of the first byte of the next
instruction.

15.3 Interface 335

For the interface of our Clash implementation, we make several simplifications:

• Clash has no notion of bidirectional signals: we will represent the data bus as a
separate input and output signal, just like in previous chapters. In our model,
the concept of detaching from the address and data buses doesn’t make sense,
so we omit the HOLD and HLDA signals completely. Direct memory access by
peripherals such as video signal generators will simply preempt the CPU’s
memory access.

• We omit pins for observing the internal state, i.e. the STACK, M1, WO, WAIT and
INTEpins. Adding these can be done as an exercise, but none of the peripherals
we implement will need them. We do keep the HLTA output, so we can write
tests that run the CPU until it halts.

• For the first version, we ignore READY. Later in this chapter, we will use a
Maybe Value for the type of the data-in bus, using Nothing to denote preemp-
tion as in the CHIP-8. We also omit MEMR, instead deciding to always interpret
the address output as a read request.

• Instead of having the data output do double duty on memory/port writes
and the status word, we have a dedicated output signal for INTA, and merge
the functionality of INP and OUT into a port-select bit of the address bus.

In summary, our simplified and consolidated interface is described by the fol-
lowing Clash data types:

type Value = Unsigned 8
type Port = Unsigned 8
type Addr = Unsigned 16

declareBareB [d|
data CPUIn = CPUIn
{ dataIn :: Value
, interruptRequest :: Bool
} |]

declareBareB [d|
data CPUOut = CPUOut

{ _addrOut :: Either Port Addr
, _dataOut :: Maybe Value
, _interruptAck :: Bool
, _halted :: Bool
} |]

makeLenses ''CPUOut

Chapter 15 Intel 8080336

15.3.1 Interrupts

On the processors we have implemented so far — the Brainfuck CPU and the
CHIP-8 — the only way of reacting to the outside world was to run a program that
actively keeps looking for some input signal, for example by executing a LD Vx, K
instruction on the CHIP-8. In contrast, interrupts allow peripherals to initiate a
response from the CPU. Their name comes from the fact that they interrupt normal
execution: the CPU is executing some program that is, for example, doing some
arithmetic computation, and then suddenly, in response to an interrupt request, the
program counter gets replaced by the address of the interrupt handler. It is then
the interrupt handler’s responsibility to handle the event that caused the interrupt,
and then resume normal operation. The latter is made possible by the processor
pushing the original program counter value to the stack before running the interrupt
handler, thereby allowing a RET instruction to resume the original program.

If there is only one interrupt input pin, how does the handler know what event
to react to? On the 8080, the answer is. . . quite complicated. When reading the
abstract description of interrupts above, we might think that the interrupt handler
has some fixed known address, maybe via an extra pointer indirection, and there’s
some logic inside the CPU to push the PC and jump to that handler. Not so on the
Intel 8080!

If the CPU is in a state accepting interrupts (enabled by the EI and disabled by
the DI instruction), and an interrupt request is received, then the current instruction
finishes execution, and afterwards, as SYNC is set high, further interrupts are disabled,
and the INTA bit of the status word is set to high. Afterwards, execution proceeds
normally, except the program counter is not incremented.

Wait, what? How does that correspond to handling the interrupt request at all?!
Well, it turns out circuitry outside the processor is supposed to detect when INTA
is set, and sneakily replace the next byte input to the CPU with the opcode of an
instruction to run the handler. This way, the CPU will fetch and execute that byte
instead of the next normal instruction’s first byte. Since the program counter is not
incremented on an interrupt, after executing that single extra one-byte instruction,
execution will proceed normally.

That is, if the byte squeezed in by the interrupt circuitry really is a full one-
byte instruction! For example, a CALL instruction does pretty much what we’d
want to start handling an interrupt request: it pushes the PC on the stack, before
jumping to a subroutine. However, a CALL takes three bytes: the first byte is 0xcd,
the machine code for CALL, and the next two bytes make up the 16-bit subroutine
address. Clearly, it doesn’t work to put the byte value 0xcd on the data bus on INTA:
the actual subroutine address would be taken from the next two bytes of the original
program where it got interrupted: a completely random address.

The Intel 8080 solves this problem of its own making by having eight dedicated,

15.3 Interface 337

one-byte RST instructions. The instruction RST i behaves the same as CALL (8 * i)
(and, in contrast to its name, doesn’t reset any internal state of the CPU at all), thus
allowing eight different 8-byte interrupt handlers to be installed at addresses 0x0000,
0x0008, . . . 0x0040. Of course, interrupt handler code can also be longer than 8
bytes, simply by JMPing to more code before RETurning to the normal operation.

To the surprise of no one, the Zilog Z80, designed to be “a better 8080”, was
released with a much more sensible interrupt protocol. While keeping the option
to use 8080 mode for backwards compatibility, it also has a much simpler mode
requiring no peripheral support at all (with a fixed interrupt handler address at
0x38), and a much more versatile mode where the byte read on INTA is taken as
the lower 8 bits of an address containing a pointer to the interrupt handler, and a
Z80-specific internal register provides the higher 8 bits.

In our implementation, we will stick to the 8080 protocol, requiring peripheral
circuitry to provide the one-byte interrupt instruction. In our computers, we will
use the following interrupt generator to turn events into interrupts:

type Interrupt = Unsigned 3

rst :: Interrupt -> Value
rst i = bitCoerce (0b11 :: Unsigned 2, i, 0b111 :: Unsigned 3)

interruptor
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe Interrupt)
-> Signal dom Bool
-> (Signal dom Bool, Signal dom (Maybe Value))

interruptor irq ack = mealyStateB irqManager Nothing (irq, ack)
where
irqManager (irq, ack) = case irq of

_ | ack -> do
req <- gets $ fromMaybe 0
put Nothing
return (False, Just $ rst req)

Just req -> do
put $ Just req
return (True, Nothing)

Nothing -> do
return (False, Nothing)

The interruptor takes 3-bit interrupt requests, and maintains a stack of size one.
If a new interrupt comes in, the first output signal fires; this should be connected to
the CPU’s interruptRequest pin. When an ack is received from the CPU, the latest
interrupt number is put on the output in the form of a RST instruction.

Chapter 15 Intel 8080338

15.3.2 I/O ports

Besides addressing 65536 bytes of RAM, the Intel 8080 can also address 256 I/O
ports. As we have seen, the CPU can let the outside world know via the status
word that the next read or write is addressing an I/O port; in our version of the
interface, we make this distinction explicit by making the type of the addrOut field
Either Port Addr.

Although the interpretation of the port vs. address distinction is up to the com-
ponents connected to the address pins, the intended meaning of these ports is to
be connected to peripherals. This way, we can use 256 single-byte lanes to control
peripherals without using up address space for memory mapping. In terms of
programming, there is a dedicated pair of instructions IN and OUT to read from and
write to a given I/O port.

An important consideration is that peripherals can react to being addressed,
even when reading from them. We will see an example of this in chapter 18: the
Compucolor II uses the TMS 5501 I/O controller. Reading from port #2 of this chip
returns the highest-priority pending peripheral event. However, a side effect of this
read is clearing said event, so the next read will return the next-highest-priority
pending event, and so on.

15.4 Instruction set architecture

Similar to the CHIP-8, we start our study of the 8080’s instruction set by looking at
the registers available to the programmer. Afterwards, we will look at the machine
instructions, skimming through ones that bring nothing new to the table compared
to the CHIP-8, and only detailing the fundamentally new ones.

15.4.1 Registers

The Intel 8080 works with 8-bit data registers and 16-bit addressing. There are seven
general-purpose registers named A, B, C, D, E, H and L. A is the accumulator: binary
arithmetic operations such as addition always use A both as the first operand and
also to store the result. The other six registers are grouped into three pairs BC, DE
and HL; these pairs are used by certain pointer arithmetic instructions.

Although BC and DE can be used for some indirect memory operations, they are
more useful for temporary operands during 16-bit address calculation: most of the
memory access has to go through HL. For example, there are instructions to load
and store the value of A from/to the address stored in BC or DE; but if we want to
target any other register, the address has to come from HL.

The results of certain operations can be used in conditional jump instructions.
For example, we can add a register’s value to A, and then jump to a given address

15.4 Instruction set architecture 339

only if this addition overflows, i.e. if the result doesn’t fit into the 8 result bits.
This can be done via the five available status flags, which are updated by certain
instructions:

• The Zero (Z) flag indicates if the latest arithmetic result was 0.

• The Sign (S) flag indicates if the latest arithmetic result has a high most signif-
icant bit.

• The Parity (P) flag is the complement of the number of high bits in the latest
result. In other words, it is set if there is an even number of high bits in the
result, and cleared otherwise.

• The Carry (C) flag indicates a carry (on addition) or a borrow (on subtraction).

• The Auxillary Carry (AC) flag indicates a carry (or borrow) from the low four
bits to the high four bits.

The first four flags can be used for conditional jumps, calls and returns. The
only use of the AC flag, on the other hand, is to convert hexadecimal values to BCD
using the Decimal Adjust Accumulator (DAA, 0x27) instruction: when DAA is used after
an addition, it rearranges the value of the A register to fall within the 0x00. . . 0x99
range, as a binary-coded decimal value.

The five flags together can also be thought of as an eighth 8-bit register, paired
with the A register into a pair called AF. The reason for this is that the PUSH and POP
instructions have four variations each: three of them push/pop a register pair (BC,
DE or HL) on the stack, and the fourth one pushes A and the status flags. Since the
contents of the stack can be accessed using normal memory operations, this also
makes it possible to observe the layout of these five flags. Indeed, they are mapped
to 8 bits in the following way:

7 6 5 4 3 2 1 0

S Z 0 AC 0 P 1 C

Here, 0 and 1 stand for unused bits with the given value. There is no storage
backing these bits: when the flag register is read or written wholesale (with the
PUSH AF and POP AF instructions, respectively), the value of these bits always remain
the fixed value.

To make instruction decoding easier, we use 3-bit numbers to represent registers,
using the same encoding as the machine code of the instructions. Similarly, each
flag is represented as its bit index into the flags register.

Chapter 15 Intel 8080340

type Reg = Index 8

pattern RA, RFlags, RB, RC, RD, RE, RH, RL :: Reg
pattern RA = 7
pattern RFlags = 6
pattern RB = 0
pattern RC = 1
pattern RD = 2
pattern RE = 3
pattern RH = 4
pattern RL = 5

type Flag = Index (BitSize Value)

pattern FS, FZ, FAC, FP, FC :: Flag
pattern FS = 7
pattern FZ = 6
pattern FAC = 4
pattern FP = 2
pattern FC = 0

Although the primary mechanism by which the status flags are changes are the
various arithmetic instructions, there is a pair of special instructions to change the
C flag directly: STC sets it, and CMC flips it. So while there is no single instruction to
clear C, a sequence of STC; CMC will do the trick.

15.4.2 Control flow

The internal 16-bit program counter is initialized to address 0x0000 at reset. Nor-
mally, it is incremented each time the next byte of an instruction is fetched. We can
change its value with the JMP family of instructions: these all take a 16-bit direct
argument for the intended jump target. There is one unconditional variant (ma-
chine code 0xc3) and eight conditional ones, two for each of the Z, S, P and C flags.
The original Intel 8080 documentation has a separate mnemonic for each of these
instructions (for example, JNZ for jump if non-zero, i.e. jump if the Z flag is cleared);
we will use a more uniform decoded representation of JMPIf Cond:

data Cond = Cond Flag Bool
deriving (Eq, Ord, Show, Generic, NFDataX)

This is slightly more generic than the real Intel 8080, since this allows branching
on the AC flag’s state; this means the instruction decoding will not be surjective,
and also slightly wasteful on decoded instruction size. Since our aim here is not

15.4 Instruction set architecture 341

to implement the smallest 8080 core, we will make this and similar concessions to
readability and regularity.

Before we move on, there are two instructions that affect control flow in two
degenerate ways: NOP, which is the no-operation instruction, and thus doesn’t
change anything at all; and HLT, which halts all execution until a reset or interrupt
arrives from the outside.

15.4.3 Stack

Unlike the CHIP-8, there is no internal stack in the Intel 8080. Instead, the 16-bit
stack pointer (register SP) can be used to access any area of the main memory via
the stack operations.

Similar to the CHIP-8’s CALL and RET instructions, the Intel 8080 also has stack-
based control flow operations. Just like direct jumps, these also come in nine
variations: one unconditional and eight conditional ones, which again we will
uniformly name CALLIf and RETIf. The CALL family puts the program counter’s
value at SP - 1 and SP - 2 and decrements SP by two; correspondingly, RET restores
the program counter from SP and SP + 1 before incrementing it by two. In other
words, the stack grows downwards and points at the next address to pop from.

We have already encountered the eight RST instructions: RST i behaves exactly
like CALL (8 * i), but only takes up one byte instead of three.

We can store and retrieve more from the stack than just the program counter, by
using the PUSH and POP family of instructions. These are the only instructions that
allow the AF register pair as an operand. The relevance of this is that this makes
the representation of the flags register observable: after, e.g., a sequence of PUSH AF
followed by POP BC, the C register now contains the eight bits of the flags register.

15.4.4 Inter-register traffic

This group of instructions moves data from one register (or pair of registers) to
another. The most straightforward of these is the MOV r1, r2 instruction, which
simply changes the value of the 𝑟1 register to the current value of the 𝑟2 register.

XCHG swaps (exchanges) the values of the register pair HL and DE, i.e. H and D swap
values, and so do L and E. There is no other register pair configuration for this
instruction (e.g. to swap BC with HL).

For calculated or indirect jumps, we can use the PCHL instruction, which replaces
the program counter with the HL register pair’s value, using, unsurprisingly, the H
register’s value as the high byte and L as the low byte. Similarly, SPHL changes the
stack pointer to the value of HL.

Chapter 15 Intel 8080342

15.4.5 Immediate loads and memory access

The instruction MVI r, imm loads the 8-bit immediate value 𝑖𝑚𝑚 into the register 𝑟.
Its two-byte sibling is LXI rr, imm2 which loads the two-byte 𝑖𝑚𝑚2 value into the
register pair 𝑟𝑟, which can also be SP.

There are versions of MOV and MVI where either the source or the target is (HL)
instead of a register. These instructions load from, or write to, the single byte of
memory addressed by the HL register pair. If we want to use BC or DE instead, we
can use LDAX BC / LDAX DE, which is a version of MOV specialized to use the A register
as the target. Similarly, STAX BC / STAX DE is a specialized version of MOV with the A
register as the source.

In our representation, we unify all these not-fully-orthogonal instructions into a
single MOV instruction where the left-hand side can be either a register, or the address
stored in a register pair, and the right-hand side can be an immediate value (to be
fetched from the next byte of the program), or a left-hand side:

data RegPair
= Regs Reg Reg
| SP
deriving (Eq, Ord, Show, Generic, NFDataX)

pattern RAF, RBC, RDE, RHL :: RegPair
pattern RAF = Regs RA RFlags
pattern RBC = Regs RB RC
pattern RDE = Regs RD RE
pattern RHL = Regs RH RL

data LHS
= Reg Reg
| Addr RegPair
deriving (Eq, Ord, Show, Generic, NFDataX)

data RHS
= Imm
| LHS LHS
deriving (Eq, Ord, Show, Generic, NFDataX)

As explained earlier, beside 16-bit-addressable memory, there are also 256 bidi-
rectional I/O ports available. The two instructions to access these are IN port and
OUT port, both containing the port number as an immediate argument. Note that
there is no register argument: IN always reads into A, and OUT always writes from A.

The immediate version of LDAX is LDA addr, which takes the 16-bit immediate
argument as an address, and loads the value of A from the one byte there. Similarly,

15.4 Instruction set architecture 343

STA addr stores A at the given constant address. LHLD addr and SHLD addr similarly
loads and stores HL at the given address, with H at the given address, and L at
addr + 1.

In this category of instructions, the odd one out is XTHL, which exchanges HL
with the top of the stack: L is swapped with the byte at (SP), and H is swapped with
(SP + 1).

15.4.6 Arithmetic

The 8-bit arithmetic instructions ADD/ADC, SUB/SBB, AND, ORA, and XOR behave exactly
as one would expect them: their first argument and their target is always A, whereas
the second argument can be any left-hand side (i.e. another register, or the memory
cell addressed by HL). These instructions also update all five status flags based on
their result. The difference between ADD and ADC (ADd with Carry-in) is that the latter
uses the C flag as an additional input for the initial carry. Similarly, SBB uses C as the
initial borrow. This way, ADC and SBB can be used to implement multi-byte addition
or subtraction by first clearing the C flag, then going from lowest to highest bytes.

The DAA instruction can also be modeled as an arithmetic instruction: just like
the others in this group, it uses the A register’s value and modifies all the status
flags.

We will use the following datatype to represent these arithmetic functions, uni-
fying ADD with ADC, and SUB with SBB, by storing a separate “use initial value of C”
flag:

data ALU = ADD Bool | SUB Bool | AND | OR | XOR | BCD
deriving (Eq, Ord, Show, Generic, NFDataX)

CMP is a special version of SUB that doesn’t actually change A. The point of this
instruction is that the flags are still updated, allowing for comparison with the other
argument via the Z (for equality), C (for unsigned comparision) and S (for signed
comparison) flags.

The CMA instruction replaces A with its bitwise complement, without updating
any of the status flags.

The bit-rotating instructions RLC and RRC, and the bit-shifting instructions RAL
and RAR operate in-place on the A register, and can only shift/rotate by one bit at a
time. We will represent these as a choice of direction (Left or Right), and then a
choice of Shift or Rotate:

data ShiftRotate = Shift | Rotate
deriving (Eq, Ord, Show, Generic, NFDataX)

Chapter 15 Intel 8080344

The one-byte increment and decrement instructions INR and DCR change their
single LHS target in-place, updating all flags except C. Their two-byte counterpart
is INX / DCX, operating on a register pair or SP.

There is also a special two-byte arithmetic instruction DAD, which adds a register
pair (or SP) to HL, updating the C flag in the process.

15.4.7 Interrupt masking

The only remaining instructions are DI (for Disable Interrupts) and EI (for Enable
Interrupts). Using DI, we can temporarily disable the servicing of interrupts. There
is no queuing of interrupt requests in the CPU: requests received after DI are simply
dropped.

As part of the interruption process, the CPU disables interrupts before the
interrupt handler starts running. This is useful because it avoids the interrupt
trashing that would happen if there was a new interrupt interrupting the interrupt
handler (try saying that out loud!). It is the interrupt handler’s responsibility to
re-allow interrupts with EI at the right point.

15.5 Instruction decoding

Each 8080 instruction is encoded in 1 to 3 bytes. For example, MOV B, D is one byte
(0x42); OUT 0x64 is two bytes (0xd3 0x64), and JMP 0x6543 is three bytes (0xc3, 0x65,
0x43). This means we need to do some decoding on the first byte to figure out
how many more bytes we need to fetch for further decoding. We will make our
life considerably simpler by writing a decoder that only looks at the first byte, and
then letting the actual execution of the instruction handle any further fetching, if
applicable.

We have made some considerable unification of the instruction set, at the cost
of some “impossible” instructions like MOV (Addr RBC) (RHS (Addr RDE), which
would be a memory-to-memory transfer. The decoder will simply never emit such
instructions in its output; however, as we will later see, we can easily make the ex-
ecution unit generic enough that such impossible instructions are handled without
hiccup. This is not to say that these non-orthogonality restrictions don’t make sense
in the context of the original Intel 8080 – our resource constraints are simply so far
beyond the design considerations of the seventies that we can afford to be graceful
instead of stingy.

15.5 Instruction decoding 345

data Instr
= MOV LHS RHS
| LXI RegPair
| LDA
| STA
| LHLD
| SHLD
| XCHG
| ALU ALU RHS
| CMP RHS
| SHROT (Either ShiftRotate ShiftRotate)
| INR LHS
| DCR LHS
| INX RegPair
| DCX RegPair
| DAD RegPair
| CMA
| CMC
| STC
| JMP
| JMPIf Cond
| CALL
| CALLIf Cond
| RET
| RETIf Cond
| RST (Unsigned 3)
| PCHL
| PUSH RegPair
| POP RegPair
| XTHL
| SPHL
| IN
| OUT
| INT Bool
| HLT
| NOP
deriving (Eq, Ord, Show, Generic, NFDataX)

We recover the specialized original instructions as pattern synonyms. The use
of these specialized versions is to match the instruction mnemonics used in the
original Intel 8080 documentation. This way, we can read our instruction decoder
side-by-side with the reference documentation.

Chapter 15 Intel 8080346

pattern MVI lhs = MOV lhs Imm

pattern ADD rhs = ALU (Add False) rhs
pattern ADC rhs = ALU (Add True) rhs
pattern SUB rhs = ALU (Sub False) rhs
pattern SBC rhs = ALU (Sub True) rhs
pattern AND rhs = ALU And rhs
pattern ORA rhs = ALU Or rhs
pattern XOR rhs = ALU XOr rhs
pattern DAA = ALU BCD (LHS (Reg RA))

pattern LDAX rr = MOV (Reg RA) (LHS (Addr rr))
pattern STAX rr = MOV (Addr rr) (LHS (Reg RA))

pattern RLC = SHROT (Left Rotate)
pattern RRC = SHROT (Right Rotate)
pattern RAL = SHROT (Left Shift)
pattern RAR = SHROT (Right Shift)

pattern DI = INT False
pattern EI = INT True

At this point, we could implement the instruction decoder as a simple 256-way
branch, and call it a day:

decodeInstr :: Value -> Instr
decodeInstr 0x00 = NOP
decodeInstr 0x01 = LXI RBC
decodeInstr 0x02 = STAX RBC
...

Instead, we will write the decoder in a fourth of the size by exploiting the
structure of the opcodes, along the same way we did in the CHIP-8 CPU when we
split the two bytes into four nybbles. For this, we will need some of the branches
to match on some bits only; for example, the bit pattern 11...010 corresponds to
conditional jumps, with the “wildcards bits” from 5th down to 3rd encoding the
condition itself (which status flag, and if the jump should be taken if the flag is
set, or if it is cleared). Clash provides the Template Haskell macro bitPattern to
write such matches on some subset of bits; this macro generates bit comparison
operations that are efficient both for synthesis and simulation.

15.5 Instruction decoding 347

decodeInstr :: Value -> Instr
decodeInstr b = case b of

$(bitPattern "01110110") -> HLT
$(bitPattern "01......") -> MOV dest src
$(bitPattern "00...110") -> MVI dest
$(bitPattern "00..0001") -> LXI rr

$(bitPattern "00111010") -> LDA
$(bitPattern "00110010") -> STA
$(bitPattern "00101010") -> LHLD
$(bitPattern "00100010") -> SHLD
$(bitPattern "00..1010") -> LDAX rr
$(bitPattern "00..0010") -> STAX rr
$(bitPattern "11101011") -> XCHG
$(bitPattern "10000...") -> ADD src
$(bitPattern "11000110") -> ADD Imm
$(bitPattern "10001...") -> ADC src
$(bitPattern "11001110") -> ADC Imm

$(bitPattern "10010...") -> SUB src
$(bitPattern "11010110") -> SUB Imm
$(bitPattern "10011...") -> SBC src
$(bitPattern "11011110") -> SBC Imm

$(bitPattern "10100...") -> AND src
$(bitPattern "11100110") -> AND Imm

$(bitPattern "10101...") -> XOR src
$(bitPattern "11101110") -> XOR Imm

$(bitPattern "10110...") -> ORA src
$(bitPattern "11110110") -> ORA Imm

$(bitPattern "10111...") -> CMP src
$(bitPattern "11111110") -> CMP Imm

$(bitPattern "00...100") -> INR dest
$(bitPattern "00...101") -> DCR dest
$(bitPattern "00..0011") -> INX rr
$(bitPattern "00..1011") -> DCX rr

$(bitPattern "00..1001") -> DAD rr
$(bitPattern "00100111") -> DAA

Chapter 15 Intel 8080348

$(bitPattern "00000111") -> RLC
$(bitPattern "00001111") -> RRC
$(bitPattern "00010111") -> RAL
$(bitPattern "00011111") -> RAR

$(bitPattern "00101111") -> CMA
$(bitPattern "00111111") -> CMC
$(bitPattern "00110111") -> STC

$(bitPattern "11000011") -> JMP
$(bitPattern "11...010") -> JMPIf cond
$(bitPattern "11001101") -> CALL
$(bitPattern "11...100") -> CALLIf cond
$(bitPattern "11001001") -> RET
$(bitPattern "11...000") -> RETIf cond

$(bitPattern "11011011") -> IN
$(bitPattern "11010011") -> OUT

$(bitPattern "11101001") -> PCHL
$(bitPattern "11..0101") -> PUSH rr'
$(bitPattern "11..0001") -> POP rr'
$(bitPattern "11100011") -> XTHL
$(bitPattern "11111001") -> SPHL

$(bitPattern "11111011") -> EI
$(bitPattern "11110011") -> DI
$(bitPattern "11...111") -> RST (bitCoerce op1)
$(bitPattern "00000000") -> NOP
_ -> NOP

where
op1 = slice (SNat @5) (SNat @3) b
op2 = slice (SNat @2) (SNat @0) b

dest = decodeLHS op1
src = LHS $ decodeLHS op2

rr = decodeRR $ slice (SNat @5) (SNat @4) b
rr' = pushPopRR rr
cond = decodeCond op1

Note that the bit pattern for HLT, 01_110_110, overlaps with the bit patterns of
MOV. Since 0b110 is the encoding of (HL), i.e. memory addressing via the pointer
in HL, the corresponding MOV would be the memory-to-memory transfer instruction

15.6 Microcoded implementation 349

MOV (HL), (HL) which as we mentioned, is not a valid 8080 instruction.
In decodeInstr we use Clash’s slice function to retrieve a BitVector from a

wider value, by specifying the most and least significant bit’s positions. We use this
to extract the three-bit operands op1 and op2 and the two-bit register pair rr.The
helper functions decodeLHS, decodeRR and decodeCond implement the decoding of
these BitVectors. In decodeLHS, our internal register numbering scheme pays divi-
dends, because we can just bitCoerce the three-bit encoding:

decodeLHS :: BitVector 3 -> LHS
decodeLHS 0b110 = Addr RHL
decodeLHS reg = Reg (bitCoerce reg)

decodeRR :: BitVector 2 -> RegPair
decodeRR 0b00 = RBC
decodeRR 0b01 = RDE
decodeRR 0b10 = RHL
decodeRR 0b11 = SP

decodeCond :: BitVector 3 -> Cond
decodeCond cond = Cond flag b
where
(flag0, b) = bitCoerce cond :: (BitVector 2, Bool)
flag = case flag0 of

0b00 -> FZ
0b01 -> FC
0b10 -> FP
0b11 -> FS

We also need an alternate version of the register pair rr for the PUSH and POP
instructions: other instructions operating on register pairs can use either BC, DE, HL
or SP, but these two use AF instead of SP.

pushPopRR :: RegPair -> RegPair
pushPopRR SP = RAF
pushPopRR rr = rr

15.6 Microcoded implementation

The largest difference between the CHIP-8 and the Intel 8080 is that the latter has
much more varied control requirements. On the CHIP-8, all instructions were
represented on two bytes, so we could implement a single unified way of fetching
before execution. Except for a handful of exceptions, most instructions could also

Chapter 15 Intel 8080350

be executed in a single clock cycle. On the 8080, after the first byte of an instruction
is fetched and decoded, we might find that we need to fetch more bytes. And
the execution itself might be a trivial matter of changing internal state (like EI), or
it could be as complex as SHLD addr, which involves a total of four roundtrips to
memory, not counting the initial opcode fetch: two more fetches to get the target
address, and then two writes to (addr) and (addr + 1).

We will manage this complexity by opting for a microcoded implementation in-
stead of hardwired control. We will write microcode in terms of micro-instructions
that are simple enough that a micro-CPU can execute them in one clock cycle. We’re
really putting the micro in microprocessor here! Moreover, the mapping of each real
8080 instruction into a sequence of micro-instructions exposes more of the regularity
and redundancy between instructions.

It should be stressed that on most microprocessors, the microcode is an imple-
mentation detail that is hidden from the programmer. The most famous retrocom-
puting exception is the Xerox Alto, where programmers could define new instruc-
tions and remap opcodes by writing custom microcode. In the rest of this chapter,
the microcode we write for our 8080 has nothing to do whatsoever with the internals
of the real physical hardware implementation from Intel. Both the design of the indi-
vidual micro-instructions and the mappings from instructions to micro-operations
that we present here are custom, and are optimized for readability instead of more
real-world concerns like component count or circuit depth.

So what should our microcode look like? We start by looking at all the instruc-
tions and searching for patterns. First of all, we see that all instructions are either 1,
2 or 3 bytes long; moreover, in all 3-byte instructions, the extra two bytes are inter-
preted as a single 16-bit word: mostly as an address (in e.g. LDA), but sometimes as
a value to be written into a register pair.

To keep things simple, we will use two separate micro-architectural registers:
an 8-bit buffer and a 16-bit one. All transfer from and to memory goes through
the 8-bit buffer; for example, we implement the instruction MVI A, imm in two steps:
first fetching the immediate value into the buffer, then moving from the buffer into
register A. Arithmetic calculations also operate on the buffer; for binary functions
like ADD, we will take the other operand from the A register.

The primary use of the 16-bit buffer is for memory addressing. Looking at
the entirety of the instruction set, we can see that we have four types of memory
addressing:

• From the program counter PC (for every instruction just to fetch it; but also for
the immediate operand, if any)

• From the stack pointer SP
• From an immediate address argument
• From an immediate port argument

15.6 Microcoded implementation 351

• Via a register pair

Similarly to using the single value buffer as the hub of memory transfer, we will
use the 16-bit buffer as the addressing hub. To implement something like LDAX (BC),
we first move the value of the register pair BC into the address buffer, then load the
value buffer from the address in the address buffer, before finally overwriting the A
register’s value from the value buffer.

By making PC and SP-based addressing first class, we can make the incrementing
of the program counter, and the incrementing (on pop) / decrementing (on push)
of the stack pointer part of the addressing:

data InAddr
= FromPtr
| FromPort
| IncrPC
| IncrSP
deriving (Enum, Bounded, Eq, Show)

data OutAddr
= ToPtr
| ToPort
| DecrSP
deriving (Enum, Bounded, Eq, Show)

One question we have side-stepped so far is how we are going to get data into
and out of the address buffer, if only the 8-bit value buffer is connected to the data-
in and data-out buses. Our solution to this is based on the observation that for all
instructions, if one byte of the address buffer is read or updated, then the other byte
will also follow shortly, during the execution of the same instruction. So for the
address→ value transfer, it is enough to come up with a pair of functions 𝑓 , 𝑔 that
decomposes a 16-bit input into an 8-bit extract and a new 16-bit value, such that
the extracts give the two bytes of the input: 256 ∗ 𝑓 (𝑥) + 𝑓 (𝑔(𝑥))) = 𝑥, and 𝑔 is an
involution: 𝑔(𝑔(𝑥)) = 𝑥. Together, these two conditions ensure that we can extract
the two bytes of 𝑥 one by one, in two steps without any extra state, by writing 𝑔(𝑥)
back into 𝑥. We will use an 8-bit rotation as a function with this property, and name
it twisting:

twist :: Addr -> (Value, Addr)
twist x = (hi, lohi)
where
(hi, lo) = bitCoerce x :: (Value, Value)
lohi = bitCoerce (lo, hi)

Chapter 15 Intel 8080352

We can use it not only to extract values byte-by-byte:

twistFrom :: (MonadState s m) => Lens' s Addr -> m Value
twistFrom l = do

(v, addr') <- twist <$> use l
l .= addr'
return v

But also to move bytes in the other direction:

twistTo :: (MonadState s m) => Lens' s Addr -> Value -> m ()
twistTo l x = do

(y, _) <- twist <$> use l
l .= bitCoerce (x, y)

Before we dive into further details, let’s illustrate the ideas so far by giving the
microcode for SHLD, a complex instruction, in an informal, but step-by-step manner:

SHLD:
1. Load data buffer from: address stored in PC, increasing it

Twist data buffer into address buffer
Write data buffer to: nowhere

2. Load data buffer from: address stored in PC, increasing it
Twist data buffer into address buffer
Write data buffer to: nowhere

3. Load data buffer from: nowhere
Overwrite data buffer from L
Write data buffer to: address stored in address buffer

4. Load data buffer from: nowhere
Increment address buffer, not updating C flag
Write data buffer to: nowhere

5. Load data buffer from: nowhere
Overwrite data buffer from H
Write data buffer to: address stored in address buffer

As the above pseudo-code shows, the microcode is very regular compared to
the instruction set. Each micro-step is specified in three parts: data in, internal state
transition, and data out.

15.6 Microcoded implementation 353

15.6.1 Representing microcode

If each micro-step of the microcode consists of a read, a micro-instruction, and a
write, can’t we just represent it as a list of 3-tuples?

type Microcode inAddr instr outAddr =
[(Maybe inAddr, instr, Maybe outAddr)]

As the old joke goes, it only takes three steps to put an elephant in the fridge
(1. open the fridge, 2. put in the elephant, 3. close the fridge), but it takes four to
put in a giraffe (we have to take out the elephant first). We have a similar potential
problem with this microcode representation.

We haven’t enumerated all possible micro-instructions yet, but for this example,
we only need two, to overwrite the value buffer from a register, and vice versa. Let’s
look at two micro-steps in isolation. The first one pushes the value of the register A
onto the stack:

step1 = (Nothing, Get RA, Just DecrSP)

The second one fetches a byte from the program, and writes its value into the B
register:

step2 = (Just IncrPC, Set RB, Nothing)

Now what happens if we try to do step and step2 straight after each other?

steps = [step1, step2]

When executing steps, according to step1, after overwriting the value buffer
with register A’s value, we should set the address bus to the value of SP (decrement-
ing it in the process), and the data-out bus to Just the value of the value buffer.
According to step2, on the other hand, before overwriting the value of register B
from the value buffer, the latter should be loaded from memory, using the program
counter (incrementing it in the process). But if we are using synchronous RAM, that
means the value of PC needs to be put on the address bus in the previous cycle. So
the question is, what should be on the address bus and the data-out bus after the first cycle?
The elephant wants to eat its write-to-SP cake, but the giraffe is intent on having its
read-from-PC one.

It looks like the addressing conflict is so severe, it has even led to a total confusion
of metaphors!

We could get out of this conundrum by taking a more operational view instead.
When we start executing microcode, we might need to do a read before the first step;

Chapter 15 Intel 8080354

and then in each step, we execute the instruction and set the address bus based on
either the current instruction’s write address, or the next instruction’s read address:

type Microcode inAddr instr outAddr =
(Maybe inAddr, [(instr, Wedge outAddr inAddr)])

Here we use the wedge sum of outAddr and inAddr, which is isomorphic to
Maybe (Either outAddr inAddr), with the idea being that if we have Here outAddr
it means the current step wants to write, and a There inAddr comes from the next
step.

However, this representation makes it harder to make microcode out of smaller
parts, even though conceptually we still want to think of each step as a triple of
read-before, do-during and write-after. We will use this representation as a normal
form during execution, but we want to keep a concatenable representation for the
description.

We solve this by using a nonempty list datatype that is indexed by the addressing
at its two ends. If we have a microcode fragment frag1 :: Steps True False, its
type tells us that on the front end, the first step has a read requirement (the True index
value), and on the back end, the last step has no write requirement (the False index
value). So if we have another fragment frag2 :: Steps False True, we should be
able to create their concatenation frag2 >++> frag1 :: Steps False False, but the
type checker should reject frag1 >++> frag2 since that would lead to a conflict in
the middle.

To achieve this, we first of all need to track statically if the read and write
addresses are set or not. We create an indexed version of the Maybe datatype, where
the boolean index tells the isJust-ness of the value:

data IMaybe (isJust :: Bool) a where
INothing :: IMaybe False a
IJust :: a -> IMaybe True a

deriving instance (Show a) => Show (IMaybe isJust a)

fromIMaybe :: IMaybe free a -> Maybe a
fromIMaybe INothing = Nothing
fromIMaybe (IJust x) = Just x

So given the isJust-ness of a step’s postamble and the isJust-ness of the next
step’s preamble, when are they compatible? Always, unless both are True. We
provide a custom TypeError for this case, to improve the error message on conflict.

15.6 Microcoded implementation 355

class Impossible where
impossible :: a

type family Compat post1 pre2 where
Compat True True =

(TypeError (Text "Conflict between postamble and next preamble")
, Impossible
)

Compat post1 pre2 = ()

One Step is still a triple of values, but it presents the isJust-ness of its addressing
coordinates as indices:

data Step pre a post hasPre hasPost where
Step

:: IMaybe hasPre pre
-> a
-> IMaybe hasPost post
-> Step pre a post hasPre hasPost

Multiple Steps are non-empty cons-lists where the head Step is Compatible with
the tail Steps. Also, since we will need to store the microcode in hardware, and
index it with a micro-program-counter in the CPU state, we will eventually need to
convert it into a vector, not a list, of (instr, Wedge outAddr inAddr) pairs. For this
reason, we also track the length of Steps in the n index.

data Steps pre a post (n :: Nat) hasPre hasPost where
One

:: Step pre a post hasPre hasPost
-> Steps pre a post 1 hasPre hasPost

More
:: (Compat hasPost1 hasPre2)
=> Step pre a post hasPre1 hasPost1
-> Steps pre a post n hasPre2 hasPost2
-> Steps pre a post (1 + n) hasPre1 hasPost2

This representation allows easy concatenation if the two ends are Compatible; in
fact, this concatenation operation is the reason we are using this representation. We
also provide a function so that users can create singleton Steps without the hassle
of the Step constructor:

Chapter 15 Intel 8080356

infixr 5 >++>
(>++>)

:: (Compat hasPost1 hasPre2)
=> Steps pre a post n hasPre1 hasPost1
-> Steps pre a post k hasPre2 hasPost2
-> Steps pre a post (n + k) hasPre1 hasPost2

One x >++> ys = More x ys
More x xs >++> ys = More x $ xs >++> ys

step
:: IMaybe hasPre pre
-> a
-> IMaybe hasPost post
-> Steps pre a post 1 hasPre hasPost

step hasPre x hasPost = One $ Step hasPre x hasPost

All that remains is normalizing into individual steps with at most a single
addressing directive between each pair. Note how go rules out the case where both
the current postamble and the next preamble is an IJustvalue: in that case, hasPost1
and hasPre2 are both True, and the typeclass application Compat True True in the
type of the More constructor reduces to Impossible.

stepsOf
:: Steps pre a post n hasPre hasPost
-> (Maybe pre, Vec n (a, Wedge post pre))

stepsOf xs = case go xs of (hasPre, ys) -> (fromIMaybe hasPre, ys)
where
go :: Steps pre a post n hasPre hasPost

-> (IMaybe hasPre pre, Vec n (a, Wedge post pre))
go (One (Step pre x post)) =

(pre, singleton (x, wedgeLeft $ fromIMaybe post))
go (More (Step pre x post) xs) =

let (pre', ys) = go xs
combined = case (post, pre') of

(INothing, pre) -> wedgeRight $ fromIMaybe pre
(post, INothing) -> wedgeLeft $ fromIMaybe post
(IJust _, IJust _) -> impossible

in (pre, (x, combined) :> ys)

15.6.2 Microcode interpreter

Now that we have a plan for writing down the microcode for each instruction, we
should also think about how we are going to execute said microcode. The eventual

15.7 Micro-architecture & micro-instructions 357

goal, of course, is to create a CPU that is similar to our previous Brainfuck and CHIP-
8 processors, using the microcode as its machine code. However, this means we have
several, intertwined tasks ahead of us: creating the CPU, designing the details of the
microcode, and using said microcode to implement each 8080 instruction. We can
simplify this considerably by regarding the microcode as a programming language,
and writing a direct software interpreter alongside designing the microcode, instead
of jumping straight into hardware design.

Even better, if we write this interpreter polymorphically, we can reuse it in the
eventual hardware CPU implementation. We instantiate it with a simple software
base monad for rapid microcode development, and then use it as a building block
in the hardware implementation which contains extra logic to drive the execution,
clock cycle by clock cycle.

Even though we don’t yet know what the micro-instructions are going to be, we
can start writing the interface of our microcode interpreter. The main operations
needed are executing a single micro-instruction, and computing (with potential
register-changing side-effects, to implement e.g. IncrPC) the address bus value for
an input or an output address. We use the _ context in the type signatures to denote
that we don’t know yet what exactly the constraint on m is going to be:

uexec :: _ => MicroInstr -> m ()
inAddr :: _ => InAddr -> m (Either Port Addr)
outAddr :: _ => OutAddr -> m (Either Port Addr)

15.7 Micro-architecture & micro-instructions

We have already described the basis of the micro-architecture as one 8-bit value
buffer and one 16-bit address buffer. Along the program counter, the stack pointer,
and the eight 8080 registers, we also include a flag for interrupt masking. This is
purely to implement the EI and DI instructions: since the whole point of interrupts
is to be triggered outside the normal execution of (micro-) instructions, interrupt
handling is otherwise not going to be part of the microcode interpreter.

data MicroState = MicroState
{ _pc, _sp :: Addr
, _registers :: Vec 8 Value
, _allowInterrupts :: Bool
, _valueBuf :: Value
, _addrBuf :: Addr
}
deriving (Show, Generic, NFDataX)

makeLenses ''MicroState

Chapter 15 Intel 8080358

mkMicroState :: Addr -> MicroState
mkMicroState pc0 = MicroState{..}
where
_pc = pc0
_sp = 0
_allowInterrupts = False
_registers = repeat 0x00
_valueBuf = 0
_addrBuf = 0

Armed with this definition, we can make a function giving us a Lens from
MicroState to a given Register. We special-case loads from RFlags to set the three
dummy bits to their correct values:

reg :: Reg -> Lens' MicroState Value
reg r = registers . lens (fixup . (!! r)) (\s v -> replace r v s)
where
fixup = case r of

RFlags -> (`clearBit` 5) . (`clearBit` 3) . (`setBit` 1)
_ -> id

We also have enough now to implement the two addressing functions inAddr
and outAddr:

inAddr :: (MonadState MicroState m) => InAddr -> m (Either Port Addr)
inAddr FromPtr = Right <$> use addrBuf
inAddr FromPort = do

(port, _) <- twist <$> use addrBuf
return $ Left port

inAddr IncrPC = Right <$> (use pc <* (pc += 1))
inAddr IncrSP = Right <$> (use sp <* (sp += 1))

outAddr :: (MonadState MicroState m) => OutAddr -> m (Either Port Addr)
outAddr ToPtr = Right <$> use addrBuf
outAddr ToPort = do

(port, _) <- twist <$> use addrBuf
return $ Left port

outAddr DecrSP = Right <$> ((sp -= 1) *> use sp)

Note that in FromPort and ToPort we complicate our life by using the low byte
of the address buffer instead of the value buffer, which is already eight bits wide.
This is because we want to use the value buffer for the value read from / written to
the port; it also nicely matches the behavior of FromPtr / ToPtr regarding the role
of the microarchitectural registers.

15.7 Micro-architecture & micro-instructions 359

15.7.1 Hello Micro-World!

Since we have already spelled out the steps of SHLD in prose in the previous
section, let’s start our design of the MicroInstr datatype by writing out the mi-
crocode for SHLD in Clash. Since our design takes five steps, we will put it in a
MicroSteps 5 pre post, where MicroSteps is Steps instantiated to our needs, and
we will figure out pre and post as we go.

type MicroSteps = Steps InAddr MicroInstr OutAddr

shld :: MicroSteps 5 _ _
shld =

_fetchToAddr >++>
_fetchToAddr >++>
_writeToPtr RL >++>
_incrementAddr >++>
_writeToPtr RH

We next decompose each of these five steps into a read/do/write tuple. This
also specifies the two ends of shdl as True and True, since the first step reads from
memory, and the last step writes to it:

shld :: MicroSteps 5 True True
shdl =

step (IJust IncrPC) ToAddrBuf INothing >++>
step (IJust IncrPC) ToAddrBuf INothing >++>
step INothing (ToReg RL) (IJust ToPtr) >++>
step INothing (Compute2 Inc2) INothing >++>
step INothing (ToReg RH) (IJust ToPtr)

Since all memory-accessing operations go through the value buffer, here we see
our first two micro-instructions: ToAddrBuf copies (or, more precisely, twists) the
value buffer’s contents into the address buffer, and ToReg which does the same to a
general-purpose register.

data MicroInstr
= ToAddrBuf
| ToReg Reg

uexec ToAddrBuf = twistTo addrBuf =<< use valueBuf
uexec (ToReg r) = reg r <~ use valueBuf

To represent the incrementing of the address buffer in step four, it pays to think
ahead a bit. There are four instructions involving 16-bit increment/decrement: INX

Chapter 15 Intel 8080360

and DCX operates on register pairs, and LHLD and SHLD writes to two neighboring
addresses. We can implement all these instructions by loading the right value into
the address buffer, using a 16-bit ALU on that value, and writing the result back. We
call the corresponding micro-instruction Compute2 to denote that it works on a 2-byte
value (in contrast to Compute and ComputeSR which do arithmetic and shift/rotate
operations on single bytes, and Compute0 for one-bit (flag) operations). We only have
two 16-bit arithmetic functions: increment (for INX, LHLD and SHLD), and decrement
(for DCX).

data ALU2 = Inc | Dec

data MicroInstr
= Compute2 ALU2
| ...

uexec (Compute2 fun) = do
addrBuf %= case fun of

Inc -> (+ 1)
Dec -> subtract 1

Keen readers might remember the DAD instruction, which also needs 16-bit arith-
metic. However, because DAD behaves more like ADD in terms of handling the carry
flag, we will avoid adding a third Add case to ALU2 and instead implement it using
the 8-bit ALU, in two rounds.

15.7.2 Handling different MicroSteps types

Using only the micro-instructions added so far, we can already implement several
instructions. LHLD is just SHDL with memory traffic going the other way:

lhld :: MicroSteps 5 True False
lhld =

step (IJust IncrPC) ToAddrBuf INothing >++>
step (IJust IncrPC) ToAddrBuf INothing >++>
step (IJust FromPtr) (ToReg RL) INothing >++>
step INothing (Compute2 Inc) INothing >++>
step (IJust FromPtr) (ToReg RH) INothing

The first two micro-steps of shld and lhld are the same; together, these steps
implement fetching a 2-byte immediate argument from the program into the address
buffer. We will use this pattern for all instructions with this format, so let’s factor it
out:

15.7 Micro-architecture & micro-instructions 361

imm2 :: MicroSteps 2 True False
imm2 =

step (IJust IncrPC) ToAddrBuf INothing >++>
step (IJust IncrPC) ToAddrBuf INothing

shld :: MicroSteps 5 True True
shdl =

imm2 >++>
step INothing (ToReg RL) (IJust ToPtr) >++>
step INothing (Compute2 Inc2) INothing >++>
step INothing (ToReg RH) (IJust ToPtr)

lhld :: MicroSteps 5 True False
lhld =

imm2 >++>
step (IJust FromPtr) (ToReg RL) INothing >++>
step INothing (Compute2 Inc2) INothing >++>
step (IJust FromPtr) (ToReg RH) INothing

In the same vein, LDA is similar to LHLD, targeting RA only:

lda :: MicroSteps 3 True False
lda =

imm2 >++>
step (IJust FromPtr) (ToReg RA) INothing

Note however that the types of shld, lhld and lda are all different from each
other: only the first writes to memory in its last step, and the microcode for lda
is shorter than the others. If our ultimate goal is to write a complete mapping
from 8080 instructions to micro-programs, what type are we going to give to that
mapping function?

One solution to this problem comes from the fact that unlike imm2, the code
of shld and lhld doesn’t need to be composed with other code fragments; they
are complete. This means we can convert them to the normalized representation
micro-program by micro-program, where these type differences have dissolved. To
get around the size problem, we also pad them with a micro-NOP up to a fixed size.
We just pick 10 for this size for now, hoping that it will be enough for all instructions;
once we’re done with writing all microcode, we can of course revisit this choice.

type MicroLen = 10
type MicroOp = (MicroInstr, Wedge OutAddr InAddr)
type Microcode = (Maybe InAddr, Vec MicroLen MicroOp)

Chapter 15 Intel 8080362

padded
:: (KnownNat k, KnownNat n, ((n + k) ~ MicroLen))
=> MicroSteps n pre post
-> Microcode

padded ops = (first, uops ++ uNOPs)
where
(first, uops) = stepsOf ops
uNOPs = repeat (uNOP, Nowhere)

microcode :: Instr -> Microcode
microcode SHLD = padded shld
microcode LHLD = padded lhld
microcode LDA = padded lda

As for uNOP, the microcode instruction that doesn’t do anything, we could add
a bespoke micro-instruction; however, we can use any instruction that has no ef-
fect outside the microarchitectural registers. ToReg wouldn’t be a good choice,
since it changes a “real” (i.e. non-microarchitectural) register. Instead, we can pick
ToAddrBuf: instruction microcode can’t make any assumptions about the value of
the address buffer before the first micro-instruction, so changing its value at the end
of microcode doesn’t matter.

uNOP :: MicroInstr
uNOP = ToAddrBuf

This also gives us an implementation of NOP: there’s no way to create an empty
Steps for it, but we can use a single uNOP step:

microcode NOP = padded $ step INothing uNOP INothing

15.7.3 Memory and register transfers

We have already seen how to implement LDA by setting the address lines from the
address buffer, and transferring the value buffer’s value to the A register. To go in
the other direction for STA, we just need the opposite of ToReg:

data MicroInstr
= FromReg Reg
| ...

uexec (FromReg r) = valueBuf <~ use (reg r)

15.7 Micro-architecture & micro-instructions 363

microcode STA = padded $
imm2 >++>
step INothing (FromReg RA) (IJust ToPtr)

We can also implement IN and OUT similar to LDA and STA; the only difference is
that the port number is stored in a single byte.

microcode IN = padded $
step (IJust IncrPC) ToAddrBuf INothing >++>
step (IJust FromPort) (ToReg RA) INothing

microcode OUT = padded $
step (IJust IncrPC) ToAddrBuf INothing >++>
step INothing (FromReg RA) (IJust ToPort)

Note that we only twist into the address buffer once; however, this matches the
FromPort and ToPort cases of inAddr and outAddr which take the 8-bit port number
from the correct half of the address buffer.

Beside LDA and STA, the other generic-purpose memory-transfer instructions are
the variants of MOV that use memory (via HL) as either the source or the destination
argument, i.e. the ones that are aliased to LDAX and STAX. Since these take the
memory address from a register pair, we need a 2-byte version of FromReg targeting
the address buffer; otherwise, their implementation is straightforward.

data MicroInstr
= FromReg2 RegPair
| ...

microcode (LDAX rr) = padded $
step INothing (FromReg2 rr) INothing >++>
step (IJust FromPtr) (ToReg RA) INothing

microcode (STAX rr) = padded $
step INothing (FromReg RA) INothing >++>
step INothing (FromReg2 rr) (IJust ToPtr)

We want to implement FromReg2 similar to FromReg, by using a lens over
MicroState. We have to be a bit careful here; lenses in general are not closed over
products1. In our case, however, any time a register pair occurs in the result of
the instruction decoder, the two components of the pair are always different. This
together with the definition of reg ensures the orthogonality property required to
make unsafePairL well-behaved.

1See e.g. https://stackoverflow.com/a/36521209/477476 for discussion containing counterexamples.

https://stackoverflow.com/a/36521209/477476

Chapter 15 Intel 8080364

unsafePairL :: Lens' s a -> Lens' s b -> Lens' s (a, b)
unsafePairL l1 l2 = lens

(view l1 &&& view l2)
(\s (x,y) -> set l1 x . set l2 y $ s)

regPair :: RegPair -> Lens' MicroState Addr
regPair (Regs r1 r2) =

unsafePairL (reg r1) (reg r2) . iso bitCoerce bitCoerce
regPair SP = sp

uexec (FromReg2 rr) = addrBuf <~ use (regPair rr)

Of course, just to get the value of a regPair, we don’t really need the full generality
of a lens; also, it is always a safe operation. We create a lens instead because other
instructions will need a way to transfer from the address buffer to register pairs as
well.

A special case of memory access is loading from program code, i.e. immediate
loads. Let’s implement MVI: we read from IncrPC and either put the result directly
into a register, or write it to ToPtr after loading the address buffer from the given
register pair:

microcode (MVI (Reg r)) = padded $
step (IJust IncrPC) (ToReg r) INothing

microcode (MVI (Addr rr)) = padded $
step (IJust IncrPC) (FromReg2 rr) (IJust ToPtr)

The third kind of instruction belonging to this group is register-to-register trans-
fers, like MOV A, B. The implementation, again, is straightforward:

microcode (MOV (Reg r1) (LHS (Reg r2))) = padded $
step INothing (FromReg r2) INothing >++>
step INothing (ToReg r1) INothing

At this point, we should note that we have made MOV generic enough to subsume
LDAX, STAX and MVI, but here we have seemingly given up on this generality by
writing their microcode separately. Instead, let’s write a version of MOV’s microcode
that covers all combinations of destination and source arguments:

microcode (MOV (Reg r) src) = case src of
Imm -> padded $

step (IJust IncrPC) (ToReg r) INothing
LHS (Reg r') -> padded $

step INothing (FromReg r') INothing >++>
step INothing (ToReg r) INothing

15.7 Micro-architecture & micro-instructions 365

LHS (Addr rr) -> padded $
step INothing (FromReg2 rr) INothing >++>
step (IJust FromPtr) (ToReg r) INothing

microcode (MOV (Addr rr) src) = case src of
Imm -> padded $

step (IJust IncrPC) (FromReg2 rr) (IJust ToPtr)
LHS (Reg r) -> padded $

step INothing (FromReg r) INothing >++>
step INothing (FromReg2 rr) (IJust ToPtr)

LHS (Addr rr') -> padded $
step INothing (FromReg2 rr') INothing >++>
step (IJust FromPtr) (FromReg2 rr) (IJust ToPtr)

Some of the immediate load and register transfer instructions target register
pairs instead of single registers: these are LXI (the register pair version of MVI),PCHL,
SPHL, and XCHG. In fact, we can regard JMP as an immediate load into PC.

We can use the 16-bit address buffer for these operations by adding the ToReg2
pair of FromReg2, and Jump for the special case

data MicroInstr
= ToReg2 RegPair
| Jump
| ...

uexec (ToReg2 rr) = regPair rr <~ use addrBuf
uexec Jump = pc <~ use addrBuf

With these additions, the microcode for the register pair instructions is straight-
forward:

microcode (LXI rr) = padded $
imm2 >++>
step INothing (ToReg2 rr) INothing

microcode JMP =
imm2 >++>
step INothing Jump INothing

microcode PCHL = padded $
step INothing (FromReg2 RHL) INothing >++>
step INothing Jump INothing

microcode SPHL = padded $
step INothing (FromReg2 RHL) INothing >++>
step INothing (ToReg2 SP) INothing

Chapter 15 Intel 8080366

However, we get into a pickle once we get to XCHG. Recall that XCHG is supposed
to swap the values of HL and DE, but we don’t want to have any direct connection
between these four registers: everything should go via the single address buffer.
We solve this by using a swapping version of FromReg2 / ToReg2:

data MicroInstr
= SwapReg2 RegPair
| ...

uexec (SwapReg2 rr) = swap addrBuf (regPair rr)

swap :: (MonadState s m) => Lens' s a -> Lens' s a -> m ()
swap lx ly = do

x <- use lx
y <- use ly
lx .= y
ly .= x

microcode XCHG = padded $
step INothing (FromReg2 RHL) INothing >++>
step INothing (SwapReg2 RDE) INothing >++>
step INothing (SwapReg2 RHL) INothing

In fact, we don’t even need ToReg2 if we have SwapReg2: the only difference be-
tween the two micro-instructions is the value of the address buffer after execution,
and the microcode of different instructions isn’t allowed to make any assumptions
about the values of the micro-architectural registers, so there is no possible interfer-
ence. For this reason, we remove ToReg2 from MicroInstr and simply replace its
occurrences with SwapReg2 in LXI, PCHL and SPHL.

15.7.4 Arithmetic

Because we have already added Compute2 for LHLD and SHLD, the 16-bit arithmetic
instructions INX and DCX are a breeze to implement: they both just load the given
register pair into the address buffer, apply the given two-byte function, and swap
back the result:

microcode (DCX rr) = padded $
step INothing (FromReg2 rr) INothing >++>
step INothing (Compute2 Dec) INothing >++>
step INothing (SwapReg2 rr) INothing

15.7 Micro-architecture & micro-instructions 367

microcode (INX rr) = padded $
step INothing (FromReg2 rr) INothing >++>
step INothing (Compute2 Inc) INothing >++>
step INothing (SwapReg2 rr) INothing

The corresponding 8-bit arithmetic operations are INR and DCR. We could imple-
ment these with a Compute2-like dedicated instruction for 8-bit incrementing/decre-
menting; instead, we fold them into the general 8-bit ALU that powers ADD and XOR
and all the others. This makes sense not just because it is more economical on the
number of kinds of micro-instructions, but also because all the general arithmetic
instructions, and INR and DCR as well, change the various status flags in the same
way. This means that the only difference between ADD B and INR B is that the former
uses the A register as the first operand, while the latter uses the constant 1. We can
always use the value buffer as the second operand, by loading the right register
value beforehand.

Actually, if we re-read the description of INR and compare it to ADD, it turns out
there is another difference: INR doesn’t update the C flag, but ADD does. Similarly,
we can think of CMA as subtraction from the constant 255, without updating any of
the flags. We could add five parameters to Compute to set which status flags should
be updated; however, looking through all the valid instructions, we can see that Z,
S and P are always either all updated or neither of them are.

data MicroInstr
= Compute ALUArg ALU UpdateZSP UpdateAC UpdateC
| ...

data ALUArg
= RegA
| Const01
| ConstFF

data UpdateZSP = SetZSP | KeepZSP deriving (Eq)
data UpdateAC = SetAC | KeepAC deriving (Eq)
data UpdateC = SetC | KeepC deriving (Eq)

Before implementing this new micro-instruction, let’s add the microcode for all
the arithmetic instructions that we can now write with Compute. The main ones,
of course, are ALU and CMP, which have the same structure: get the right-hand side
argument into the value buffer, apply Compute, then use the result by optionally
writing it back into register A:

Chapter 15 Intel 8080368

alu
:: ALU
-> RHS
-> MicroInstr
-> Microcode

alu fun rhs writeback = case rhs of
Imm -> padded $

step (IJust IncrPC) (Compute RegA fun SetZSP SetAC SetC)
INothing >++>

step INothing writeback INothing
LHS (Reg r) -> padded $

step INothing (FromReg r) INothing >++>
step INothing (Compute RegA fun SetZSP SetAC SetC)

INothing >++>
step INothing writeback INothing

LHS (Addr rr) -> padded $
step INothing (FromReg2 rr) INothing >++>
step (IJust FromPtr) (Compute RegA fun SetZSP SetAC SetC)

INothing >++>
step INothing writeback INothing

We can think of CMP as a special version of SUB with a no-op writeback:

microcode (ALU fun src) = alu fun src (ToReg RA)
microcode (CMP src) = alu (Sub False) src uNOP

The other arithmetic functions can be written in a more ad-hoc way, but still
centered on Compute to implement the actual arithmetics:

microcode (INR (Addr rr)) = padded $
step INothing (FromReg2 rr) INothing >++>
step (IJust FromPtr) (Compute Const01 (Add False) SetZSP SetAC KeepC)

(IJust ToPtr)
microcode (INR (Reg r)) = padded $

step INothing (FromReg r) INothing >++>
step INothing (Compute Const01 (Add False) SetZSP SetAC KeepC)

INothing >++>
step INothing (ToReg r) INothing

microcode (DCR (Addr rr)) = padded $
step INothing (FromReg2 rr) INothing >++>
step (IJust FromPtr) (Compute ConstFF (Add False) SetZSP SetAC KeepC)

(IJust ToPtr)

15.7 Micro-architecture & micro-instructions 369

microcode (DCR (Reg r)) = padded $
step INothing (FromReg r) INothing >++>
step INothing (Compute ConstFF (Add False) SetZSP SetAC KeepC)

INothing >++>
step INothing (ToReg r) INothing

microcode CMA = padded $
step INothing (FromReg RA) INothing >++>
step INothing (Compute ConstFF (Sub False) KeepZSP KeepAC KeepC)

INothing >++>
step INothing (ToReg RA) INothing

Quite good mileage from just one new micro-instructions, especially if we con-
sider that with our generalizations, the single ALU opcode stands for all of ADD, ADC,
SUB, SBC, AND, ORA, XOR, and DAA!

Its handler in uexec is quite straightforward: taking a page from the CHIP-8 CPU,
we leave all the heavy lifting of Compute to the pure function binALU. This leaves
Compute with only the task of providing the right first argument, and updating the
flags.

uexec (Compute arg fun updateAC updateC) = do
x <- case arg of

RegA -> use (reg RA)
Const01 -> pure 0x01
ConstFF -> pure 0xff

ac <- use (flag FAC)
c <- use (flag FC)
y <- use valueBuf
let (ac', c', y') = binALU fun x (ac, c, y)
when (updateZSP == SetZSP) $ do

flag FZ .= (y' == 0)
flag FS .= y' `testBit` 7
flag FP .= even (popCount y')

when (updateAC == SetAC) $ flag FAC .= ac'
when (updateC == SetC) $ flag FC .= c'
valueBuf .= y'

We promised an implementation of DAD using the 8-bit ALU; it is also an example
of using Compute without SetZSP.

Recall that DAD adds the given register pair’s value (as a 16-bit unsigned integer)
to HL. So far, we can only add A and the constant values 1 and 255 to the value buffer,
so let’s extend ALUArg with a new constructor that takes the low byte of the address
buffer as the other operand:

Chapter 15 Intel 8080370

data ALUArg
= AddrLo
| ...

uexec (Compute arg fun updateZSP updateAC updateC) = do
x <- case arg of

RegA -> use (reg RA)
AddrLo -> truncateB <$> use addrBuf
Const01 -> pure 0x01
ConstFF -> pure 0xff

-- Rest unchaged

We can then do 16-bit addition simply as two 8-bit additions, with the carry
propagated via the C flag. Since the specification of DAD says that C should be
updated, it is not a problem to overwrite its value during the first addition, since the
second addition will set it to its correct value anyway. The ToAddrBuf instructions
after each addition twist the current byte (first the low one, then the high one) back
into the address buffer.

microcode (DAD rr) = padded $
step INothing (FromReg2 rr) INothing >++>
step INothing (FromReg RL) INothing >++>
step INothing (Compute AddrLo (Add False) KeepZSP KeepAC SetC)

INothing >++>
step INothing ToAddrBuf INothing >++>
step INothing (FromReg RH) INothing >++>
step INothing (Compute AddrLo (Add True) KeepZSP KeepAC SetC)

INothing >++>
step INothing ToAddrBuf INothing >++>
step INothing (SwapReg2 RHL) INothing

For shifts and rotations, we follow the same pattern: the ComputeSR micro-
instruction is implemented in terms of a pure shiftRotateALU function.

data MicroInstr
= ComputeSR (Either ShiftRotate ShiftRotate)
| ...

microcode (SHROT sr) = padded $
step INothing (FromReg RA) INothing >++>
step INothing (ComputeSR sr) INothing >++>
step INothing (ToReg RA) INothing

15.7 Micro-architecture & micro-instructions 371

uexec (ComputeSR sr) = do
c <- use (flag FC)
x <- use $ reg RA
let (c', x') = shiftRotateALU sr (c, x)
flag FC .= c'
valueBuf .= x'

The actual implementation of binALU and shiftRotateALU is straightforward; for
Add and Sub, computing the AC flag requires going 4 bits at a time. Similarly, ensur-
ing a correct (two-digit) binary-coded decimal value requires fixing both nybbles
separately.

binALU :: ALU -> Value -> (Bool, Bool, Value) -> (Bool, Bool, Value)
binALU fun x (a, c, y) = case fun of

Add c0 -> addC (c0 && c)
Sub c0 -> subC (c0 && c)
And -> (testBit (x .|. y) 4, False, x .&. y)
Or -> (False, False, x .|. y)
XOr -> (False, False, x `xor` y)
BCD -> bcd

where
(xh, xl) = nybbles x
(yh, yl) = nybbles y

addC c = (a', c', byte (zh, zl))
where

(a', zl) = bitCoerce $ (xl `add` yl) + if c then 1 else 0
(c', zh) = bitCoerce $ (xh `add` yh) + if a' then 1 else 0

subC c = (a', c', byte (zh, zl))
where

(a', zl) = bitCoerce $ (xl `sub` yl) - if c then 1 else 0
(c', zh) = bitCoerce $ (xh `sub` yh) - if a' then 1 else 0

bcd = (a', c', z)
where

(a', w) = bitCoerce $ add y $
if yl > 9 || a then (0x06 :: Value) else 0

(wh, _) = nybbles w
(c', z) = bitCoerce $ add w $

if wh > 9 || c then (0x60 :: Value) else 0

Chapter 15 Intel 8080372

nybbles :: Value -> (Unsigned 4, Unsigned 4)
nybbles = bitCoerce

byte :: (Unsigned 4, Unsigned 4) -> Value
byte = bitCoerce

shiftRotateALU
:: Either ShiftRotate ShiftRotate
-> (Bool, Value)
-> (Bool, Value)

shiftRotateALU fun (c, x) = case fun of
Left sr ->

(b7, bitCoerce (mid, b0, case sr of Shift -> c; Rotate -> b7))
Right sr ->

(b0, bitCoerce (case sr of Shift -> c; Rotate -> b0, b7, mid))
where
(b7, mid, b0) = bitCoerce x :: (Bool, Unsigned 6, Bool)

15.7.5 Conditional execution

The conditional instructions JMPIf, CALLIf and RETIf need part of the microcode to
only be executed if certain status flags have certain values. Recall the microcode for
an unconditional JMP:

microcode JMP = padded $
imm2 >++>
step INothing Jump INothing

To change it to a conditional jump, we add a check after the imm2 fetch but before
the Jump. And what do we need to be able to check for? We need to support all
conditions of type Cond, which is what we have in JMPIf, CALLIf and RETIf:

data MicroInstr
= When Cond | ...

evalCond :: (MonadState MicroState m) => Cond -> m Bool
evalCond (Cond flg target) = uses (flag flg) (== target)

We create the lens for a given flag from the RFlags register, by taking its flg-th
Bit, and converting it from/to Bool

bitL :: (BitPack a, Enum i) => i -> Lens' a Bit
bitL i = lens (!i) (flip $ replaceBit i)

15.7 Micro-architecture & micro-instructions 373

flag :: Flag -> Lens' MicroState Bool
flag flg = reg RFlags . bitL flg . iso bitToBool boolToBit

The microcode for JMPIf, then, loads the target program counter into the address
buffer, and then bails out if the condition doesn’t hold:

microcode (JMPIf cond) = padded $
imm2 >++>
step INothing (When cond) INothing >++>
step INothing Jump INothing

We will handle When micro-instructions by wrapping our underlying monad m
in ExceptT FlowControl. The name ExceptT is unfortunate, but its exception-like
semantics are a good match for our use case: if, during microcode execution, the
interpreter encounters a request to go to the next instruction or the halt state, it will
need to terminate the current instruction.

data FlowControl = GotoNext | GotoHalt

uexec (When cond) = do
passed <- evalCond cond
unless passed $ throwError GotoNext

Similarly, for HALT, we just need a micro-instruction that throws GotoHalt:

data MicroInstr
= Halt | ...

uexec Halt = throwError GotoHalt

microcode HLT = padded $ step INothing Halt INothing

15.7.6 Stack operations

For CALL and RET, we need a way of pushing and popping the program counter. We
can pop any two-byte value by reading from IncrSP into the value buffer twice and
twisting it into the address buffer, just like how imm2 reads from IncrPC:

pop2 :: MicroSteps 2 True False
pop2 =

step (IJust IncrSP) ToAddrBuf INothing >++>
step (IJust IncrSP) ToAddrBuf INothing

This gives us a straightforward implementation of RET and RETIf:

Chapter 15 Intel 8080374

popPC = pop2 >++> step INothing Jump INothing

microcode RET = padded $
popPC

microcode (RETIf cond) = padded $
step INothing (When cond) INothing >++>
popPC

Can we do the same for pushPC, by first moving the value of the program counter
into the address buffer by push2, and then twisting it into the value buffer as we
write to DecrSP? The problem with this approach becomes apparent when we write
out the full the microcode for CALL:

push2 =
step INothing FromAddrBuf (IJust DecrSP) >++>
step INothing FromAddrBuf (IJust DecrSP)

pushPC = step INothing FromPCToAddrBuf INothing >++> push2

microcode CALL = padded $
imm2 >++>
pushPC >++>
step INothing Jump INothing

microcode (CALLIf cond) = padded $
imm2 >++>
step INothing (When cond) INothing >++>
pushPC >++>
step INothing Jump INothing

Here, imm2 fetches the two-byte call target address into the address buffer, which
we use at the end when Jump copies it into the program counter. We can’t swap the
order of imm2 and pushPC, because the program counter value to push needs to point
to the start of the next instruction, i.e. after the two-byte immediate argument has
been fetched. So pushPC cannot be allowed to overwrite the address buffer. Instead,
we add a FromPC micro-instruction which uses the value buffer directly, thereby
keeping the address buffer unchanged:

data MicroInstr
= FromPC | ...

uexec FromPC = valueBuf <~ twistFrom pc

15.7 Micro-architecture & micro-instructions 375

pushPC :: MicroSteps 2 False True
pushPC =

step INothing FromPC (IJust DecrSP) >++>
step INothing FromPC (IJust DecrSP)

RST is just half a CALL: instead of fetching the call target from the program, the
target address is encoded in the instruction itself. The Rstmicro-instruction decodes
the reset index into a full 16-bit address via a left-shift.

data MicroInstr
= Rst (Unsigned 3) | ...

uexec (Rst rst) = pc .= extend rst `shiftL` 3

microcode (RST irq) = padded $
pushPC >++>
step INothing (Rst irq) INothing

Accessing the stack as data isn’t different from accessing it for control: the
only difference between PUSH and CALL, and RET and POP, is where the value comes
from/goes to:

microcode (PUSH rr) = padded $
step INothing (FromReg2 rr) INothing >++>
push2

microcode (POP rr) = padded $
pop2 >++>
step INothing (SwapReg2 rr) INothing

And then we have XTHL, which swaps the top of the stack with the HL register
pair. Because we already have SwapReg2, we can write its microcode to match this
explanation exactly: pop, swap, and push back.

microcode XTHL = padded $
pop2 >++>
step INothing (SwapReg2 RHL) INothing >++>
push2

15.7.7 Internal settings

This final catch-all category covers CMC, STC, and EI/DI: all these are instructions
with no connection to the outside world, just changing various status bits. Our life
here would be much simpler if the interrupt masking bit was part of the flag register,

Chapter 15 Intel 8080376

but alas, it isn’t. So we need two bespoke micro-instructions to transform individual
flags and the interrupt enable bit.

data MicroInstr
= Compute0 Flag ALU0
| SetInt Bool
| ...

data ALU0
= Complement
| ConstTrue

microcode CMC = padded $ step INothing (Compute0 FC Complement) INothing
microcode STC = padded $ step INothing (Compute0 FC ConstTrue) INothing
microcode (INT b) = padded $ step INothing (SetInt b) INothing

uexec (Compute0 flg fun) = flag flg %= case fun of
ConstTrue -> const True
Complement -> complement

uexec (SetInt b) = allowInterrupts .= b

As this concludes the microcode for all instructions, we can also retroactively
change MicroLen to just 8, the length of the longest microcode from DAD.

15.8 A direct software implementation

Now that we have a complete mapping of Intel 8080 instructions to microcode, and
a complete implementation of all micro-instructions in terms of some underlying
monad m, we turn our attention to providing such an m for a software implementa-
tion.

First, recall the full type of uexec, including the constraint imposed on m:

uexec
:: (MonadState MicroState m)
=> MicroInstr
-> ExceptT FlowControl m ()

The natural choice of m would be State MicroState, but that leaves no room to
implement memory and port access; instead, we create a record type to describe the
model of the outside world, and carry that around.

15.8 A direct software implementation 377

data World m = World
{ readMem :: Addr -> m Value
, writeMem :: Addr -> Value -> m ()
, inPort :: Port -> m Value
, outPort :: Port -> Value -> m Value
}

newtype SoftCPU m a = SoftCPU
{ unSoftCPU :: ReaderT (World m) (StateT MicroState m) a }
deriving newtype
(Functor, Applicative, Monad,
MonadReader (World m), MonadState MicroState)

instance MonadTrans SoftCPU where
lift = SoftCPU . lift . lift

The big simplification compared to the eventual hardware implementation is
that access to the outside world (via ports and memory addresses) is executed
directly, inline with the execution of the microcode. We write a function nextInstr
that runs the full microcode for the next instruction, and runSoftCPU which runs all
the way until the CPU encounters a HLT instruction:

nextInstr :: (Monad m) => SoftCPU m Bool
nextInstr = do

instr <- decodeInstr <$> fetchByte
exec instr

runSoftCPU :: (Monad m) => World m -> MicroState -> m ()
runSoftCPU w s0 =

(evalStateT `flip` s0) . (runReaderT `flip` w) .
unSoftCPU $
whileM nextInstr

We can fetch the next instruction via the readMem operation provided by the
World:

fetchByte :: (Monad m) => SoftCPU m Value
fetchByte = do

addr <- use pc <* (pc += 1)
peekByte addr

Chapter 15 Intel 8080378

peekByte :: (Monad m) => Addr -> SoftCPU m Value
peekByte addr = do

readMem <- asks readMem
lift $ readMem addr

Of course, peekByte is useful for more than just fetching instructions: we will
also use it to implement the addressing request of each micro-step, if it is a memory
read. In other cases, we proceed similarly, just using different fields of World.

addressing :: (Monad m) => Wedge OutAddr InAddr -> SoftCPU m ()
addressing = bitraverse_ (doWrite <=< outAddr) (doRead <=< inAddr)

doWrite :: (Monad m) => Either Port Addr -> SoftCPU m ()
doWrite target = either writePort poke target =<< use valueBuf
where
writePort port value = do

write <- asks outPort
lift $ void $ write port value

poke addr value = do
writeMem <- asks writeMem
lift $ writeMem addr value

doRead :: (Monad m) => Either Port Addr -> SoftCPU m ()
doRead target = valueBuf <~ either readPort peekByte target
where
readPort port = do

read <- asks inPort
lift $ read port

Finally we have everything to write the instruction executor. Given a decoded
instruction, we look up its microcode, execute its first addressing operation (which
is always a read, so we lift it to a read-or-write via wedgeRight), then run each micro-
step in turn. The Bool returned by exec is whether the CPU should keep running, or
it executed a halt instruction; this latter signals to runSoftCPU to finish its execution
loop.

exec :: (Monad m) => Instr -> SoftCPU m Bool
exec instr = do

let (setup, usteps) = microcode instr
addressing $ wedgeRight setup
ex <- runExceptT $ mapM_ ustep usteps
return $ ex /= Left GotoHalt

15.8 A direct software implementation 379

ustep :: (Monad m) => MicroOp -> ExceptT FlowControl (SoftCPU m) ()
ustep (effect, post) = do

uexec effect
lift $ addressing post

15.8.1 Zero-cost padding

Our naïve implementation of padding means that no matter how many useful steps
it takes to implement a given instruction, we always take the full MicroLen cycles.
The only exception to this is the When micro-instruction, which can cause an early
exit via GotoNext. But isn’t an early exit what we want at the end of the useful part
of the microcode as well?

If we mark each MicroOp with a flag telling if we should continue afterwards, we
can use that to exit exec without going through all the remaining uNOP steps:

type MicroOp = ((MicroInstr, Wedge OutAddr InAddr), Bool)

padded
:: (KnownNat k, KnownNat n, ((n + 1) + k) ~ MicroLen)
=> MicroSteps (n + 1) pre post
-> Microcode

padded ops = (first, withCont uops ++ uNOPs)
where
(first, uops) = stepsOf ops
uNOPs = repeat ((nop, Nowhere), False)

withCont :: (KnownNat n) => Vec (n + 1) a -> Vec (n + 1) (a, Bool)
withCont xs = zip xs $ repeat True :< False

The change in padded’s type reflects that we can’t mark the end of an empty
MicroSteps; however, recall that we already have no way of constructing a value
of type MicroSteps 0 pre post, since the smallest constructor corresponds to a
singleton vector. The new type of padded (coming from the type of withCont) simply
expresses that this property of MicroSteps is exploited here.

The inspiration for this improvement came from the handling of a When where
the condition doesn’t hold; it only makes sense that we can handle the last micro-
instruction in ustep by signaling the same GotoNext exception:

ustep :: (Monad m) => MicroOp -> ExceptT FlowControl (SoftCPU m) ()
ustep ((effect, post), cont) = do

uexec effect
lift $ addressing post
unless cont $ throwError GotoNext

Chapter 15 Intel 8080380

15.8.2 Interrupts

Putting together the instruction decoder decodeInstr, the microcode table
microcode, the addressing interpreters inAddr and outAddr, the microcode
interpreter uexec, and SoftCPU as the main controller, we have everything for
straight-line execution of Intel 8080 programs: at the start of runSoftCPU, the first
instruction is fetched from the initial value of the program counter, and subsequent
instructions are read and executed, interleaved with memory and port access, one
after the other.

However, the Intel 8080 also provides a way of interrupting this regular sequence
of instruction execution. As we have seen, the interrupt request pin can be used
to instructs the CPU to fetch the first byte of the next instruction without using
the program counter, instead relying on some external mechanism to put the right
value on the data bus. For the software implementation, we keep things simple by
putting the instruction itself in the interrupt request:

interrupt :: (Monad m) => Instr -> SoftCPU m ()
interrupt instr = whenM (use allowInterrupts) $ do

allowInterrupts .= False
exec instr

We can combine regular nextInstr for normal operation and interrupt for
external triggers by running the former in a loop, and calling the latter whenever
we want to simulate an event. We will see an example of this in the software
implementation of the Space Invaders arcade machine, where the video subsystem
raises interrupts on certain raster lines.

15.8.3 Testing

The big benefit of having a software model of the CPU is that it allows high-level
testing of the components that are going to be shared with the hardware implemen-
tation. Concretely, we can use the software CPU as a test bench for the microcode.
We started with the specification of the various 8080 instructions and turned them
into microcode; before thinking too much about how to implement that microcode
in hardware, it would be nice to have some assurance that we’re targeting correct
microcode.

There are several test suites one can find for the 8080, most of them contemporary
to the CPU itself. Here, we will look at two tests in particular: Preliminary Z80 tests,
which was released as open source in 1994 by Frank D. Cringle and modified to
target the Intel 8080 by Ian Bartholomew; and the Microcosm Associates 8080/8085
CPU Diagnostic from 1980 by Kelly Smith and containing updates by Mike Douglas,
donated to the SIG/M CP/M users’ group according do its header.

15.8 A direct software implementation 381

The interface to both of these tests is the same: they are meant to run on the
CP/M operating system, print some success / failure messages, and exit. Does that
mean we need to build a full computer that can run CP/M just to be able to test our
CPU? Fortunately not: we can implement the OS routine (at address 0x0005) that
originally prints to the screen by writing to an output port. Similarly, we can use
a single HLT instruction to “exit” the current “process” at 0x0000. This gives us a
simple way to observe the test results by just listening to writes to the output port
and the CPU’s halt status.

The only other CP/M convention we need to be aware of is that user programs
are loaded to and run from address 0x0100 onwards. So given a binary image file
containing one of the two test suites, we can load it into an array representing the
8080 memory by prepending our “mini CP/M” prelude:

load :: FilePath -> IO (IOArray Addr Value)
load file = do

bs <- fmap bitCoerce . BS.unpack <$> BS.readFile file
arr <- newArray (minBound, maxBound) 0x00
zipWithM_ (writeArray arr) [0x0000..] prelude
zipWithM_ (writeArray arr) [0x0100..] bs
return arr

Then we can run it by implementing readMem and writeMem using the array, and
printing in outPort. The initial CPU state sets the program counter to 0x0100, which
is where the tests start.

run :: IOArray Addr Value -> IO ()
run arr = runSoftCPU (mkWorld arr) (mkState 0x0100)

mkWorld :: IOArray Addr Value -> World IO
mkWorld arr = World{..}
where
readMem addr = readArray arr addr
writeMem addr val = writeArray arr addr val
inPort _ = return 0xff
outPort _port value = do

putChar . chr . fromIntegral $ value
return 0xff

Note that outPort doesn’t actually check the port number – our prelude only
uses a single port (port 0), so we just connect the same functionality to all of them.

Here, we write main to simply run each test suite in turn, and it is up to the user
to verify their output. Integrating into a testing framework is beyond our scope,

Chapter 15 Intel 8080382

and is thus left as an exercise for the reader; in the code accompanying this book,
the Intel 8080 implementation uses the Tasty library for this purpose.

main :: IO ()
main = do

hSetBuffering stdout NoBuffering

for_ files $ \file -> do
putStrLn $ "Running test " <> takeBaseName file <> ":"
run =<< load file
putStrLn ""

where
files = ["TST8080.COM", "8080PRE.COM"]

The only missing part is writing the prelude; finally we get to program our own
CPU! We need two entry points for these tests: 0x0000 finishes the test, and 0x0005
prints a message. For the first one, we implement 0x0000 as printing a courtesy
newline before stopping the CPU:

prelude :: [Value]
prelude = mconcat [exit, message]
where
exit =
[[0x3e, 0x0a] -- 0x0000: exit: MVI A, 0x0a
, [0xd3, 0x00] -- 0x0002: OUT 0
, [0x76] -- 0x0004: HLT
]

Printing a message turns out to be a bit trickier, because CP/M actually maps
several different functionalities to entry address 0x0005, dispatched on the C regis-
ter’s value. If C is equal to 2, the single ASCII character in the E register is printed; if
C is 9, a sequence of characters starting at DE is printed, terminated by a '$' character.
Because these are the only two modes used in our test suites, instead of multi-way
switching, we simply check C against 2, and then do one or the other.

message =
[[0x3e, 0x02] -- 0x0005: message: MVI A, 0x02
, [0xb9] -- 0x0007: CMP C
, [0xc2, 0x0f, 0x00] -- 0x0008: JNZ 0x000f
, [0x7b] -- 0x000B: putChr: MOV A, E
, [0xd3, 0x00] -- 0x000C: OUT 0
, [0xc9] -- 0x000E: RET

15.8 A direct software implementation 383

, [0x0e, 0x24] -- 0x000F: putStr: MVI C, '$'
, [0x1a] -- 0x0011: loop: LDAX DE
, [0xb9] -- 0x0012: CMP C
, [0xc2, 0x17, 0x00] -- 0x0013: JNZ next
, [0xc9] -- 0x0016: RET
, [0xd3, 0x00] -- 0x0017: next: OUT 0
, [0x13] -- 0x0019: INX DE
, [0xc3, 0x11, 0x00] -- 0x001a: JMP loop

If everything works fine, we should see the following output:

Running test TST8080:
MICROCOSM ASSOCIATES 8080/8085 CPU DIAGNOSTIC
VERSION 1.0 (C) 1980

CPU IS OPERATIONAL

Running test 8080PRE:
8080 Preliminary tests complete

Just to see what a positive result look like, let’s break the microcode a bit. Let’s
say we forget to write the result back to the register pair in DCX:

microcode (DCX rr) = padded $
step INothing (FromReg2 rr) INothing >++>
step INothing (Compute2 Dec) INothing

This is caught by the Microcosm test:

Running test TST8080:
MICROCOSM ASSOCIATES 8080/8085 CPU DIAGNOSTIC
VERSION 1.0 (C) 1980

CPU HAS FAILED! ERROR EXIT=04EE

For this test, the exit location is always the address of the instruction just after
the error; looking at 0x04ee in the assembly source of TST8080, we see the following
code testing the DCX instruction:

04E5 0B DCX B
04E6 1B DCX D
04E7 2B DCX H
04E8 3E 12 MVI A,012H
04EA B8 CMP B
04EB C4 A006 CNZ CPUER ;TEST "DCX" B

Chapter 15 Intel 8080384

The so-called “preliminary” test doesn’t catch this error; for another example,
we can try breaking PCHL by omitting the step that does the actual jump:

Running test 8080PRE:
02f7

The output is less elaborate than the one from the Microcosm test, but it does
lead us to the assembly code just before 0x2f7:

; test indirect jumps
02F0 21 02F7 LXI H,lab7
02F3 E9 PCHL
02F4 CD 0352 CALL error

15.9 The complete CPU

We structure the hardware implementation of the CPU the same way as our earlier
processors: we create a datatype to control the various execution phases and use
that in the state.

data Phase
= Init
| Halted
-- More to be added
deriving (Show, Generic, NFDataX)

data CPUState = CPUState
{ _phase :: Phase
, _microState :: MicroState
}
deriving (Show, Generic, NFDataX)

makeLenses ''CPUState

initState :: Addr -> CPUState
initState pc0 = CPUState

{ _phase = Init
, _microState = mkMicroState pc0
}

type CPU = CPUM CPUState CPUOut

We implement the default output values by wiring the address buffer to the
address line, and checking the phase for the halted output.

15.9 The complete CPU 385

defaultOut :: CPUState -> Pure CPUOut
defaultOut CPUState{_microState = MicroState{..}, ..} = CPUOut{..}
where
_addrOut = Right _addrBuf
_dataOut = Nothing
_interruptAck = False
_halted = case _phase of

Halted -> True
_ -> False

For the implementation of the actual CPU state transition function, let’s ignore
interrupts first. We extend the Phase datatype with two more constructors: we enter
Fetching with the next instruction’s machine code available on the dataIn input, so
we can use that as an index into a ROM containing the microcode; we then go to the
Executing phase, which goes through the microcode step by step.

data Phase
= Fetching
| Executing Value (Index MicroLen)
| ...

As a first approximation, the four constructors of Phase can be handled as such:

• In Init, we start fetching the next instruction, by setting the address bus to
the program counter’s value and going to the Fetching phase.

• In Fetching, the instruction machine code is read from the data bus, the
program counter is incremented, and we go to the Executing phase for the
first micro-step.

• In Executing instr i, the i-th micro-step of the given instruction is executed.

• In the Halted phase, we simply remain in that phase without any other state
change.

cpu :: Pure CPUIn -> CPUM CPUState CPUOut ()
cpu CPUIn{..} = use phase >>= \case

Init -> fetchNext
Fetching -> do

let instr = dataIn
microState.pc += 1
phase .= Executing instr 0

Executing instr i -> exec instr i
Halted -> return ()

Chapter 15 Intel 8080386

fetchNext :: CPU ()
fetchNext = do

addr <- use (microState.pc)
addrOut .:= Right addr
phase .= Fetching

For the actual execution, the microcode is retrieved from ROM and executed
using the uexec function we have already implemented. Then, depending on the re-
sult, either we go to the next step (Executing instr (i + 1)), to the next instruction
via fetchNext, or the Halted phase.

exec :: Value -> Index MicroLen -> CPU ()
exec instr i = do

let ((uop, post), cont) = microcodeFor instr !! i
runExceptT (zoom microState $ uexec uop) >>= \case

Left GotoNext -> do
fetchNext

Left GotoHalt -> do
phase .= Halted

Right () -> do
maybe fetchNext (assign phase . Executing instr) $ succIdx i

The implementation of microcodeFor uses Template Haskell to evaluate
microcode at all possible 8-bit machine code bytes. The Template Haskell excursion
ensures that Clash puts only the flattened bit-level data of the microcode in the
generated Verilog, instead of complicated expressions to compute it that can trip
up some downstream synthesis tools.

microcodeFor :: Value -> MicroOps
microcodeFor = asyncRom

$(TH.lift $ map (snd . microcode . decodeInstr . bitCoerce) $
indicesI @256)

While the above is enough scaffolding for the execution of the micro-instructions,
it doesn’t solve the problem of I/O: note that both the initial read address and the
after-instruction read/write address from the microcode is ignored. So what does
it look like to handle these requests? Writes are easy: we can simply set the address
line output to the outAddr-computed value, and put valueBuf on dataOut. However,
reads are more involved: after setting the address bus, the result comes back from
RAM at the next cycle. So for example, in the Fetching phase, we have no way
of handling the full extent of an initial read request; the most we can do is set the
address bus, and then add a flag for the Executing phase to store the dataIn input
in the value buffer:

15.9 The complete CPU 387

data Phase
= Executing Value (Index MicroLen) | ...

We write the addressing implementation to return whether it is a read request,
so that both the Fetching and Executing phases know what to pass to the next
Executing phase:

addressing :: Wedge OutAddr InAddr -> CPU Bool
addressing Nowhere = return False
addressing (Here write) = do

doWrite =<< zoom microState (outAddr write)
return False

addressing (There read) = do
doRead =<< zoom microState (inAddr read)
return True

doWrite :: Either Port Addr -> CPU ()
doWrite target = do

addrOut .:= target
value <- use $ microState.valueBuf
dataOut .:= Just value

doRead :: Either Port Addr -> CPU ()
doRead addr = addrOut .:= addr

The changes to cpu and exec are fairly small: just applying addressing on the
initial setup and the after-instruction address request, and passing its result on.

cpu :: Pure CPUIn -> CPUM CPUState CPUOut ()
cpu CPUIn{..} = use phase >>= \case

Fetching -> do
let instr = dataIn
microState.pc += 1
let setup = setupFor instr
load <- addressing (wedgeRight setup)
phase .= Executing load instr 0

Executing load instr i -> do
when load $ microState.valueBuf .= dataIn
exec instr i

...

Chapter 15 Intel 8080388

exec :: Value -> Index MicroLen -> CPU ()
exec instr i = do

let ((uop, post), cont) = microcodeFor instr !! i
runExceptT (zoom microState $ uexec uop) >>= \case

Right () -> do
load <- addressing post
maybe fetchNext (assign phase . Executing load instr) $

succIdx i
...

The code providing the lookup table for the initial Setup of each instruction is
similar to the microcode table, we just take the fst component of each microcode
entry instead of the snd:

setupFor :: Value -> Setup
setupFor = asyncRom

$(TH.lift $ map (fst . microcode . decodeInstr . bitCoerce) $
indicesI @256)

Note that we need to keep microcodeFor and setupFor separate. If instead, we
had microcodeAndSetupFor :: Value -> (Setup, MicroOps), Clash would gener-
ate two copies of the same ROM, since it is accessed from two separate places (the
two branches of the switch on phase), with two different addresses.

One more optimization we can do is to take the cont flag into account: since a
False value means there is no point in continuing execution (since all that remains
is padding), we can go to fetchNext at that point:

exec :: Value -> Index MicroLen -> CPU ()
exec instr i = do

let ((uop, post), cont) = microcodeFor instr !! i
runExceptT (zoom microState $ uexec uop) >>= \case

Right () -> do
load <- addressing post
let i' = guard cont *> succIdx i
maybe fetchNext (assign phase . Executing load instr) i'

...

Note, however, that mixing addressing and fetchNext in the same cycle can be
bad news, since both may want to set the address bus. This bug is not introduced
by the optimization that takes cont into account; rather, it was there in our previous
version as well, but would only cause problems if we had any instruction that has
no padding (i.e. is 8 micro-steps long) and finishes with a memory write. But now

15.9 The complete CPU 389

that we have a way of going to the next instruction earlier, it is important to ensure
that the last real (i.e. non-padding) instruction has no write:

padded
:: (KnownNat k, KnownNat n, ((n + 1) + k) ~ MicroLen)
=> MicroSteps (n + 1) pre False
-> Microcode

This type-level change ensures this property holds without the need for any
term-level checks. And in fact, when we try to compile our code after this
check, we will find that several instructions (among them push2) require an extra
step INothing uNOP INothing step just to avoid finishing on a step that writes to
memory – these would cause faulty behavior if we didn’t change padded to catch
them statically.

15.9.1 Running the test suite

We can use similar scaffolding as the CHIP-8 to run the test suite on our CPU using
high-level simulation. We start with an implementation of the world that consumes
the CPU output to produce the next cycle’s input:

world :: (Monad m) => World m -> Pure CPUOut -> m (Pure CPUIn)
world World{..} CPUOut{..} = do

dataIn <- case _addrOut of
Left port ->

maybe (inPort port) (outPort port) _dataOut
Right addr -> do

x <- readMem addr
traverse_ (writeMem addr) _dataOut
return x

interruptRequest <- pure False
return CPUIn{..}

Then, we run the CPU and the world in tandem, feeding one into the other. As
with the software implementation, sim returns a flag telling the rest of the simulation
if the CPU is still running, i.e. not halted.

sim :: (Monad m) => World m -> StateT (Pure CPUIn, CPUState) m Bool
sim w = do

(inp, s) <- get
let (out, s') = runState (runCPU defaultOut $ cpu inp) s
inp' <- lift $ world w out
put (inp', s')
return $ not $ _halted out

Chapter 15 Intel 8080390

initInput :: Pure CPUIn
initInput = CPUIn

{ dataIn = 0x00
, interruptRequest = False
}

run :: IOArray Addr Value -> IO ()
run arr =

evalStateT `flip` (initInput, initState 0x0100) $
whileM $ sim (mkWorld arr)

The rest of the test running framework can be reused as-is from the software
implementation.

15.9.2 Interrupt handling

The above takes care of straight-line execution, but what about interrupts? The
two components of interrupt handling are recording the interrupt event, and then
reacting to it. These two are separate because interrupt requests can come in at any
time, including in the middle of executing an instruction; but reacting to them will
have to wait until just before fetching the next instruction.

We record interrupt requests in a simple flag which is updated in every cycle
in cpu independently of other, phase-specific state transitions. Of course, interrupt
requests should only be latched when not masked, i.e. when allowInterrupts is set.

data CPUState = CPUState
{ _interrupted :: Bool
...
}

latchInterrupt :: Pure CPUIn -> CPU Bool
latchInterrupt CPUIn{..} = do

allowed <- use (microState.allowInterrupts)
when (interruptRequest && allowed) $ interrupted .= True
use interrupted

To accept an interrupt, we need to do a special kind of Fetching: instead of setting
the address bus from the program counter, we need to raise the interruptAckoutput,
and then wait one more cycle for the interrupt instruction to be available. Interrupts
also enable coming back from the Halted state, which gives programmers a handy
way to sleep until the next interrupt occurs.

15.9 The complete CPU 391

cpu :: Pure CPUIn -> CPUM CPUState CPUOut ()
cpu inp@CPUIn{..} = do

interrupted <- latchInterrupt inp
use phase >>= \case

Fetching False | interrupted -> do
acceptInterrupt
phase .= Fetching True

Fetching interrupting -> do
let instr = dataIn
unless interrupting $ microState.pc += 1
...

Halted -> when interrupted $ do
acceptInterrupt
phase .= Fetching True

...

When an interrupt is accepted, we also disable further interrupts until an EI
instruction enables them back:

acceptInterrupt :: CPU ()
acceptInterrupt = do

microState.allowInterrupts .= False
interrupted .= False
interruptAck .:= True

Although not needed for the two test suites we’ve been using, it can be instruc-
tive, even useful, to also update our high-level simulation framework to support
interrupts. We store an extra IRQ component in the state of the world:

data IRQ
= NewIRQ Value
| QueuedIRQ Value

world
:: (Monad m)
=> World m
-> Pure CPUOut
-> StateT (Maybe IRQ) m (Pure CPUIn)

Externally, a new interrupt can be raised by changing the state to
Just (NewIRQ instr). We leave the policy decision of what to do if there is
already a queued interrupt to the rest of the simulation code. Internally, memory
read requests are overridden with the instruction code from the QueuedIRQ by

Chapter 15 Intel 8080392

adding a new branch to the dataIn computation. The two new functions taking
care of interrupt state management are getInterrupt and newInterrupt.

world World{..} CPUOut{..} = do
dataIn <- case _addrOut of

Right addr | _interruptAck ->
getInterrupt

...
interruptRequest <- newInterrupt
return CPUIn{..}

where
getInterrupt = get >>= \case

Just (QueuedIRQ instr) -> do
put Nothing
return instr

_ -> return 0x00

newInterrupt = get >>= \case
Just (NewIRQ instr) -> do

put $ Just $ QueuedIRQ instr
return True

_ -> return False

We can get rid of this new StateT layer in our test bench runner by starting from
no queued interrupts, and never adding any:

run :: IOArray Addr Value -> IO ()
run arr =

evalStateT `flip` Nothing $
evalStateT `flip` (initInput, initState 0x0100) $
whileM $ sim (mkWorld arr)

15.9.3 Stalling on memory contention

As we have seen in the CHIP-8 chapter, when peripherals are connected to the same
RAM elements as the CPU, those peripherals may need to pre-empt the processor’s
memory access. The real Intel 8080 has the READY and WAIT pins for this purpose:
when a peripheral needs access to RAM, the READY input is pulled low, which stalls
the CPU on its next read from the data bus, signaled to the outside world by the
WAIT output going high.

In our implementation, we leave the WAIT output to an exercise, and bundle READY
with dataIn: if the memory is not ready for reading, we simply put Nothing on the
data input pins of the CPU. This ensures we don’t accidentally forget to implement

15.9 The complete CPU 393

stalling and mistake the memory output from an address requested by a peripheral
with the intended read value.

data CPUIn = CPUIn
{ dataIn :: Maybe Value
...
}

There are two points in our code where we access dataIn: during Fetching to get
the machine code of the next instruction, and when Executing a microcode step that
was preceded by a read request. In both of these cases, if dataIn contains Nothing,
there is no meaningful way to apply the rest of the state changes in the given period,
and we need to retry in the next one. We can do this easily by wrapping CPUM inside
the MaybeT monad transformer, and treating mzero as a retry request.

type CPU = MaybeT (CPUM CPUState CPUOut)

cpu :: Pure CPUIn -> CPUM CPUState CPUOut ()
cpu inp@CPUIn{..} = void . runMaybeT $ do

...

We get rid of the MaybeT layer at the top of cpu, which ensures that the rest of
it will only be executed up to the first mzero. Do we need to go through the rest of
our code and lift everything? No, because uexec and addressing are polymorphic,
and MaybeT has lifting instances of MonadState! All we need to do is to change direct
accesses of dataIn with an effectful way of reading a byte, and use readByte both
when Fetching and when Executing:

readByte :: Pure CPUIn -> CPU Value
readByte CPUIn{..} = maybe retry consume dataIn
where
retry = mzero
consume x = return x

If we change our simulation-based test to always put Just values on the data
input, it will seem as if we are done: just change world to reflect that the World
can fail to provide read values; that is, that the underlying monad is wrapped in a
MaybeT.

world
:: (Monad m)
=> World (MaybeT m)
-> Pure CPUOut
-> StateT (Maybe IRQ) m (Pure CPUIn)

Chapter 15 Intel 8080394

world World{..} CPUOut{..} = do
dataIn <- case _addrOut of

Left port -> lift . runMaybeT $
maybe (inPort port) (outPort port) _dataOut

Right addr | _interruptAck ->
getInterrupt

Right addr -> lift . runMaybeT $ do
x <- readMem addr
traverse_ (writeMem addr) _dataOut
return x

...

With this change, we can run our test benches and see that they still work. How-
ever, this is misleading, because we haven’t really exercised the new functionality:
we run the test with the CPU always getting read results immediately. To expand
the scope of our testing, we can extend the test bench program with a supply of
Bool values to tell if memory should be ready in a given period. There are many
ways to do this; here, we present one way, using the monad-supply package. Note
the use of cycle to ensure an infinite list of Booleans, avoiding evalSupplyT to error
out because of running out of items.

import Control.Monad.Supply

run :: [Bool] -> IOArray Addr Value -> IO ()
run accessPattern arr =

evalStateT `flip` Nothing $
evalStateT `flip` (initInput, initState 0x0100) $
evalSupplyT `flip` cycle accessPattern $
whileM $ do

memReady <- supply
lift $ sim (mkWorld memReady)

The only change to mkWorld here is the addition of a new Bool parameter, which
we can use in readMem to decide if the result should be held back:

mkWorld :: Bool -> IOArray Addr Value -> World (MaybeT IO)
mkWorld memReady arr = World{..}
where -- writeMem, inPort and outPort unchanged
readMem addr = do

guard memReady
liftIO $ readArray arr addr

15.9 The complete CPU 395

If we try running the tests with different memory accessPatterns from the
imaginary peripherals, taking care to include at least some True cycles where the
CPU gets a chance to use the RAM, we quickly run into trouble: either the tests
hang, or print nonsense, or just produce failures.

To see what is going wrong, we should look at how the address bus changes
whenever readByte fails with a retry. In the cycle before the first retry, the address
bus is set directly to the desired address in doRead, for example by an IncrSP
addressing mode. Then, in the first cycle, if the RAM was busy serving some other
peripheral’s request, readByte fails, leading to another readByte in the next cycle.
However, since the address bus isn’t restored, it will use whatever value is specified
in defaultOut; in our case, that is to use the contents of the addrBuf. But that will
not give the same result as IncrSP did in the previous cycle – and so the next cycle
(unless it fails again) will read from the wrong address. Neither would it be a good
idea to re-evaluate the last addressing mode, since that would result in SP being
increased twice (and the second try would already be using the once-increased
value).

The solution to this problem is to remember the last read address and the last
value to be written until the read succeeds, and put that on the address bus for
subsequent cycles. We put an address and a write latch in the CPU state, and use
their value as the default for addrOut and dataOut:

data CPUState = CPUState
{ _addrLatch :: Either Port Addr
, _dataOutLatch :: Maybe Value
...
}

defaultOut :: CPUState -> Pure CPUOut
defaultOut CPUState{_microState = MicroState{..}, ..} = CPUOut{..}
where
_addrOut = fromMaybe (Right 0x0000) _addrLatch
_dataOut = _dataOutLatch
...

In fact, we can do one better, by changing the type of addrOut in CPUOut to a
Maybe; this allows circuits to implement peripherals that have lower priority access
to RAM than the CPU.

Chapter 15 Intel 8080396

data CPUOut = CPUOut
{ _addrOut :: Maybe (Either Port Addr)
...
}

defaultOut :: CPUState -> Pure CPUOut
defaultOut CPUState{_microState = MicroState{..}, ..} = CPUOut{..}
where
_addrOut = _addrLatch
...

Now all that remains to be done is to update addrLatch and dataOutLatch both
on read/write requests and successful reads. If there is no pending read/write
request, we still return the dataIn value (if available); this is for the case where the
data bus is populated by an external actor in the case of an interrupt. The fromJustX
used here is a simulation-friendly version of fromJust.

readByte :: Pure CPUIn -> CPU Value
readByte CPUIn{..} = do

pending <- isJust <$> use addrLatch
if pending then maybe retry consume dataIn

else return $ fromJustX dataIn
where
retry = mzero
consume x = do

addrLatch .= Nothing
dataOutLatch .= Nothing
return x

doRead :: Either Port Addr -> CPU ()
doRead addr = addrLatch .= Just addr

doWrite :: Either Port Addr -> CPU ()
doWrite target = do

addrLatch .= Just target
value <- use $ microState.valueBuf
dataOutLatch .= Just value

The new structure of cpu is as follows: after latching interrupt requests (since
that can happen while waiting for memory), we use readByte to ensure any pending
read/write requests are fulfilled. Then, the result of readByte is used in all branches
where normally, dataIn would be accessed (in the lines marked with (*) below):

15.9 The complete CPU 397

cpu :: Pure CPUIn -> CPUM CPUState CPUOut ()
cpu inp@CPUIn{..} = void . runMaybeT $ do

interrupted <- latchInterrupt inp
dataRead <- readByte inp -- (*)

use phase >>= \case
Init -> do

fetchNext
Fetching False | interrupted -> do

acceptInterrupt
phase .= Fetching True

Fetching interrupting -> do
let instr = dataRead -- (*)
unless interrupting $ microState.pc += 1
let setup = setupFor instr
load <- addressing (wedgeRight setup)
phase .= Executing load instr 0

Executing load instr i -> do
when load $ microState.valueBuf .= dataRead -- (*)
exec instr i

Halted -> when interrupted $ do
acceptInterrupt
phase .= Fetching True

With these changes applied, both test suites should pass with any access pattern
that has at least some True values.

All that remains is exporting the complete CPU as a Clash signal function for
our further chapters:

intel8080From
:: (HiddenClockResetEnable dom)
=> Addr
-> Signals dom CPUIn
-> Signals dom CPUOut

intel8080From startAddr =
mealyCPU (initState startAddr) defaultOut cpu

intel8080
:: (HiddenClockResetEnable dom)
=> Signals dom CPUIn
-> Signals dom CPUOut

intel8080 = intel8080From 0x0000

Chapter 15 Intel 8080398

Exercises

• Add various status outputs from the real 8080’s SYNC functionality, such as
WAIT

• The implementation of addressing by IncrPC, IncrSP or DecrSP contains its
own 16-bit incrementer/decrementer. Change the microcode to make use of
the Compute2 instruction instead, thereby sharing a single 16-bit ALU both for
addressing and arithmetic.

• Implement Compute2 via two rounds of 8-bit Compute, reusing a single 8-bit
ALU

• The only use of SwapReg2 that exploits its swapping behavior (i.e. that couldn’t
be implemented with a much simpler ToReg2) is in XTHL and XCHG. By using
both the value buffer and the address buffer as temporary storage, it is possible
to implement XTHL and XCHG using ToReg2, thereby obliviating the need for
SwapReg2.

• Instead of microcode instructions that operate directly on register pairs, ex-
plore implementing everything in terms of single (8-bit) registers only.

15.10 Summary

• The Intel 8080 was a real, physically existing CPU. Some of its design decisions
stem from the constraints of physical IC design, such as saving on the number
of pins.

• Instead of following the hardware interface directly, we are capturing the
intended meaning of its pins: on one hand, there is no constraint on space,
so we can avoid multiple-duty pins like the various status bits on the data bus;
on the other hand, we package up related pins, such as packing READY and the
data-in bus into a single Maybe Value input.

• It is a von Neumann machine using instructions taking up between one
and three bytes. The first byte determines the instruction width, so we
implement generic fetching for the first byte, and fold the rest of the fetching
into the execution of the instruction.

• Control flow can be changed externally using interrupts. The 8080’s interrupt
design in particular requires quite a lot of external machinery; we implement
that outside our CPU core so that different computers using the same 8080
implementation can use different interrupting schemes, just like the real hard-
ware.

15.10 Summary 399

• Our implementation is microcoded: each 8080 instruction is mapped to a
sequence of simpler, more regular micro-instructions that can be executed in
a single clock period. By embedding the microcode into Haskell, we get to
use Haskell’s tools for abstraction to reuse microcode fragments, and can use
the host type system to enforce some microcode invariants.

16Project: TinyBASIC

Compared to the Brainfuck computer and the CHIP-8 machine, the end result of
the Intel 8080 chapter is less satisfying: we have built a processor, but without a full
computer around it, there is no way to just jump in and start playing around with
it. In this chapter, we design and build a very simple machine that boots straight
into a BASIC interpreter, just like early home computers. The goal is not just the
gratification of turning on a self-built computer and programming it. Instead, this
chapter is also a stepping stone on our way to the two other, Intel 8080-based
computers in the last chapters of this book: the Space Invaders arcade machine and
the Compucolor 2 home computer.

16.1 What is Tiny BASIC?

Tiny BASIC originally started in 1975 as a community project to create a BASIC
interpreter for the Altair 8800 kit computer, organized and released in a way that
we would recognize today as an open source project. It quickly spread to other
platforms, covering the big three home computer CPUs of Intel 8080, Motorola 6800
and MOS 6502. As its name suggests, one common thread among Tiny BASIC
versions was its aim to be small and efficient enough to run on these early home
computers with 8-bit CPUs running at single-digit MHz clock speed and very
limited RAM size.

Because of its licensing, community development, and distribution primarily
via printed newsletters, it is difficult to pinpoint the Tiny BASIC. Here, we will use
the so-called Palo Alto Tiny BASIC 2.0 by Li-Chen Wang1. This Intel 8080 version
fits into 2 kB and is configured to be used with a total of 6 kB of RAM. In the name
of simplicity, and because the Altair 8800 kit didn’t come with keyboard input or
video output as standard, all I/O is done via a serial console, accessed by the CPU
through port operations. The actual UART functionality is implemented by the
Motorola 6850 Asynchronous Communications Interface Adapter.

1Available online from https://www.autometer.de/unix4fun/z80pack/ftp/altair/tinybasic-2.0.prn

401

https://www.autometer.de/unix4fun/z80pack/ftp/altair/tinybasic-2.0.prn

Chapter 16 Project: TinyBASIC402

In this chapter, we will create two 8080-based computers that boot into
Tiny BASIC. The first one only uses parts we have already developed, and provides
a user experience similar to the Altair 8800 of the mid-seventies: the computer
exposes a serial port, and a serial terminal is required to interact with it. The second
version reimagines Tiny BASIC as a late-seventies home computer: a keyboard and
a screen can be connected directly to the board. This will require us to write a PS/2
keyboard interface implementation and a video driver that displays text.

16.2 Asynchronous Communications Interface Adapter

Tiny BASIC itself is written with the assumption that an ACIA chip is connected to
the CPU via ports 0x10 and 0x11. This chip, controlled via IN and OUT instructions
in the program, is basically a UART implementation with a CPU-friendly interface
consisting of two register addresses.

The real Motorola 6850 used in the Altair 8800 provides more functionality
and configurability than what is used by Tiny BASIC. In particular, we will not
implement error detection and interrupting, and hard-code the communication
protocol of 9600 bits per second with 8 data bits and 1 stop bit. This leaves us with
very little to worry about:

• Register 0 is the control/status register. Since the control register is used
for configurability, we will simply ignore writes. Reading from this register
returns a byte with bit 0 containing output state (high if ready to output, low
if busy) and bit 1 containing input state (whether the next byte is ready for
reading). We will not implement the functionality of the other bits and keep
them at 0.

• Register 1 is the data register. Writing to it when the transmitter is not busy
starts a new transmission; reading returns the last byte received, and clears
the read-ready flag.

As we can see, reading from register 1 has a side-effect. This is an important dif-
ference between peripherals and memory, and we will represent port reads/writes
with a custom PortCommand data type:

data PortCommand port a
= ReadPort port
| WritePort port a
deriving (Generic, NFDataX, Show)

16.2 Asynchronous Communications Interface Adapter 403

This way, a value of type Maybe (PortCommand port a) packs together both the
selection of the given peripheral (in its Just-ness) and, when selected, the port
command.

Since we already have a standalone UART implementation, and because
we want to provide the same ACIA-compatible interface even in the second
version of our Tiny BASIC computer that uses a keyboard and video output
directly, no serial communication involved, we implement the ACIA without
the actual serialization/deserialization built in. In other words, beside the
Maybe (PortCommand (Unsigned 1) (Unsigned 8) input from the CPU and the
Maybe (Unsigned 8) data output, the communication with the outside world is
also in terms of a parallel Unsigned 8 type.

acia
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Unsigned 8))
-> Signal dom Bool
-> Signal dom (Maybe (PortCommand (Unsigned 1) (Unsigned 8)))
-> (Signal dom (Unsigned 8)

, Signal dom (Maybe (Unsigned 8))
)

Internally, the only state is the last-read value, stored when the input byte is
Just a new value and cleared when the data register is read. The status register
is computed from the receiving buffer and the transmitter’s readiness signal; for
this simplified implementation, all other flags are reported as False. The output is
emitted when the data register is written; we use a WriterT (First (Unsigned 8))
effect to do this “on the side” while computing the port read value.

acia inByte outReady cmd =
mealyStateB step Nothing (inByte, outReady, cmd)

where
step (inByte, outReady, cmd) =

fmap (second getFirst) . runWriterT $ do
traverse (put . Just) inByte
fmap fromJustX $ for cmd $ \case

-- Data register
ReadPort 0x1 -> do

queued <- get <* put Nothing
return $ fromMaybe 0x00 queued

WritePort 0x1 x -> do
tell $ pure x
return 0x00

Chapter 16 Project: TinyBASIC404

-- Control register
ReadPort 0x0 -> do

inReady <- isJust <$> get
return $ bitCoerce $

False :>
False :>
False :>
False :>
False :>
False :>
outReady :>
inReady :>
Nil

WritePort 0x0 x -> do
return 0x00

16.3 The core logic board

We can share the logic board design between both versions of our Tiny BASIC
computer. It consists of the 8080 core, 2 kB of ROM containing the Tiny BASIC
software, 6 kB of RAM, and an ACIA peripheral controller. The only signal going
in and coming out is via the ACIA.

8080
ACIA

inByte

outByte

outReady

RAM 2 kB

ROM 2 kB

RAM 4 kB

logicBoard
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Unsigned 8))
-> Signal dom Bool
-> Signal dom (Maybe (Unsigned 8))

The details of the memory layout come from assumptions made by the
Tiny BASIC version we use:

• The two registers of the ACIA are accessed through port numbers 0x10 and
0x11.

16.3 The core logic board 405

• Since a real hardware Intel 8080 always starts execution at address 0x0000, we
have to put ROM there. Since Palo Alto Tiny BASIC v2.0 is 1900 bytes, we
round it up to 2 kB, giving us ROM from 0x0000 to 0x07ff.

• Starting at 0x0800, various states of the BASIC interpreter are stored before
the actual program text. We need RAM starting at this address.

• Initialization code sets the stack pointer to 0x2000. Recalling that the stack
grows towards 0x0000, that means we need RAM at least up to that address.

Putting it all together, we need 6 kB of RAM from 0x0800 to 0x1fff. We split it
into two parts for easier address decoding: 2 kB from 0x0800 to 0x0fff, and 4 kB
from 0x1000 to 0x1fff.

To decode the Either Port Address coming from the CPU, we need to extend
the memoryMap facility with a pair of new address matchers:

matchLeft
:: Addressing addr1 a
-> Addressing (Either addr1 addr2) a

matchLeft = matchAddr [| either Just (const Nothing) |]

matchRight
:: Addressing addr2 a
-> Addressing (Either addr1 addr2) a

matchRight = matchAddr [| either (const Nothing) Just |]

The other extension is for attaching peripheral endpoints. The two key differ-
ences between memory and an I/O port are that port reads can have side-effects,
and that a port may have backpane signals going to the rest of the circuit (or to the
outside world):

type Port dom addr dat a =
Signal dom (Maybe (PortCommand addr dat)) ->
(Signal dom (Maybe dat), a)

port
:: forall addr' a addr. ()
=> ExpQ {- Port dom addr dat a -}
-> Addressing addr (Handle addr', Result)

The implementation of port differs from ram0 etc. only in that we don’t assume
peripherals to be synchronous, and so we do our own delaying. This gives a
unified interface for the CPU: port access is exposed with the same semantics as

Chapter 16 Project: TinyBASIC406

synchronous memory, with read results appearing on the data bus at the next clock
cycle.

port mkPort = readWrite $ \addr wr ->
[| let cmd = cmdFromAddr <$> $addr <*> $wr

(read, x) = $mkPort cmdk
in (register undefined read, x) |]

cmdFromAddr :: Maybe addr -> Maybe a -> Maybe (PortCommand addr a)
cmdFromAddr (Just addr) Nothing = Just $ ReadPort addr
cmdFromAddr (Just addr) (Just w) = Just $ WritePort addr w
cmdFromAddr _ _ = Nothing

We are now ready to describe the full logic board in a very straightforward way:
all connections to the CPU are handled by the memoryMap and there are no sources
of interrupts.

logicBoard inByte outReady = outByte
where
CPUOut{..} = intel8080 CPUIn{..}

interruptRequest = pure False

dataIn = Just 0 |>. dataIn'
(dataIn', outByte) =
$(memoryMap [|Right 0 .|> _addrOut|] [|_dataOut|] $ do

rom <- romFromFile (SNat @0x0800) [|"tinybasic.bin"|]
ram <- ram0 (SNat @0x1800)
(acia, outByte) <- port @(Unsigned 1) [|acia inByte outReady|]

matchLeft @(Unsigned 8) $ do
from 0x10 $ connect acia

matchRight @(Unsigned 16) $ do
from 0x0000 $ connect rom
from 0x0800 $ connect ram

return outByte)

In this simple computer, there are no shared resources where memory access
contention could occur. Although our Intel 8080 core is written in such a way
that memory access requests are explicitly signaled and peripherals can stall the
CPU (which is just a fancy way of saying the _addrOut and dataIn field’s types are
wrapped in Maybe), here we don’t use any of these features and write our memory
map in terms of non-Maybe addresses and read-out values.

16.3 The core logic board 407

16.3.1 Testing

Since logicBoard contains the full Tiny BASIC computer apart from the details
of connecting its input and output to the outside world, it is just the right unit
to build an end-to-end testbench around it. We return to the Terminal package
from chapter 6 to sample keypresses at every simulated clock cycle, feed that as
input to logicBoard, and print its output by interpreting bytes as (printable) ASCII
characters.

Unfortunately, Terminal doesn’t provide a direct way to check for available events
without waiting for any to occur, but we can use STM’s MonadPlus instance to achieve
it via the awaitWith interface, creating a non-blocking version of awaitEvent:

sampleEvent
:: (MonadInput m)
=> m (Maybe (Either Interrupt Event))

sampleEvent = awaitWith $ \int ev -> msum
[Just . Left <$> int
, Just . Right <$> ev
, return Nothing
]

Here, the third branch doesn’t block on either int or ev and immediately returns
Nothing if neither of the preceding two is ready to return with an interrupt or an
input event.

We turn sampleEvent’s output into a byte to feed into logicBoard by taking the
ASCII value of characters, using the carriage return '\r' for the Enter key, and
ignoring everything else:

sampleKey :: (MonadInput m) => m (Maybe (Unsigned 8))
sampleKey = fromEvent <$> sampleEvent
where
fromEvent (Just (Right (KeyEvent key mods)))

| CharKey c <- key, mods == mempty =
Just . fromIntegral . ord $ c

| EnterKey <- key, mods == mempty =
Just . fromIntegral . ord $ '\r'

fromEvent _ = Nothing

Printing a byte is a much simpler affair: '\r' is interpreted as a newline, printable
characters are printed, and everything else is (again) ignored:

Chapter 16 Project: TinyBASIC408

printByte :: (MonadPrinter m) => Unsigned 8 -> m ()
printByte val = case chr . fromIntegral $ val of

'\r' -> putStringLn ""
c | isPrint c -> putChar c
_ -> return ()

Now that we have sampleKey to provide input, and printByte to consume output,
we can hook these up to logicBoard using the Clash simulator. Since printByte
works synchronously, printing then and there, we can keep the outReady input of
logicBoard at True.

main :: IO ()
main = do

sim <- simulateIO_ @System (uncurry logicBoard . unbundle)
(Nothing, True)

withTerminal $ runTerminalT $ forever $ sim $ \outByte -> do
traverse_ printByte outByte
inByte <- sampleKey
return (inByte, True)

Running this testbench not only gives us assurance that our Tiny BASIC com-
puter works, but also gives us our first user-programmable computer! Unlike the
Brainfuck machine and CHIP-8, which required their program to be burnt into the
FPGA configuration in the form of memory initializers, we can just type in programs
in a simplified dialect of BASIC.

Note that Tiny BASIC only accepts keywords in uppercase, so e.g. print "Hello"
is not syntactically valid, only PRINT "Hello". Here’s a sample interaction session:

TINY BASIC

OK
>10 FOR I=1 TO 10
>20 FOR J=1 TO I
>30 PRINT " ",
>40 NEXT J
>50 print "Hello from Clash"
>60 NEXT I
>LIST
10 FOR I=1 TO 10
20 FOR J=1 TO I
30 PRINT " ",
40 NEXT J
50 print "Hello from Clash"
60 NEXT I

16.3 The core logic board 409

OK
>run
WHAT?

OK
>RUN
WHAT?
50 print "Hello from Clash"

OK
>50 PRINT "Hello from Clash"
>RUN
Hello from Clash
Hello from Clash
Hello from Clash
Hello from Clash
Hello from Clash
Hello from Clash
Hello from Clash
Hello from Clash
Hello from Clash
Hello from Clash

OK

Exercises

• One very annoying property of running Tiny BASIC via our test bench is that
there is no way to exit the simulator, other than killing the process externally.
Improve sampleKey so that an interrupt exits the simulation.

• Interrupts in Terminal correspond to Ctrl + C events from the user. How-
ever, Tiny BASIC is capable of handling Ctrl + C on its own, by breaking
the execution of the current BASIC program and putting us back at the prompt,
with the program intact in memory. Change sampleKey so that Terminal inter-
rupts are turned into byte 0x03 (ASCII end of text marker), and use Ctrl + D

(which is a CharKey event with ctrlKey set in the mods) to exit the simulation
instead.

• Increase test coverage by simulating outReady as sometimes False. Similar to
memory contention, we can use any (potentially randomly generated) scheme.
A realistic one would be one that e.g. sets outReady to False for a certain
number of cycles after a printByte.

Chapter 16 Project: TinyBASIC410

16.4 Version 1: serial I/O

Connecting the logicBoard to the outside world via a serial UART is just three lines
of code: one to instantiate the logicBoard, one to connect the serial receiver’s output,
and one to connect the serial transmitter’s input. The rest is just the naming of the
pins.

topEntity
:: "CLK" ::: Clock System
-> "RESET" ::: Reset System
-> "RX" ::: Signal System Bit
-> "TX" ::: Signal System Bit

topEntity = withEnableGen board
where
board rx = tx
where

outByte = logicBoard inByte outReady
inByte = fmap unpack <$> serialRx (SNat @9600) rx
(tx, outReady) = serialTx (SNat @9600) (fmap pack <$> outByte)

Recall that Clash uses a 100 MHz clock domain as the default System one; hence,
the type of topEntity needs to be adapted on FPGA boards with a different built-in
clock.

16.5 PS/2 keyboard interface

In the remainder of this chapter, we build a second version of our Tiny BASIC
computer that interfaces directly with a keyboard and a screen, instead of requiring
a serial terminal. First, we take care of keyboard input via the so-called PS/2
keyboard interface.

The name PS/2 comes from IBM’s Personal System/2, a personal computer first
released in 1987. It used a 6-pin connector for mouse and keyboard that became the
standard de facto connector for these devices until USB took over. At first glance, it
seems like a weird choice to pick PS/2 for interfacing with keyboards in this book: it
is more modern than the actual computers we are building, but not modern enough
to be around anymore: contemporary keyboards only have a USB connector.

However, for keyboard and mice, the PS/2 interface sits in the same sweet spot as
VGA for video: it is simple enough to implement in our own hardware, and there is
a huge stock of PS/2 and combo USB-PS/2 keyboards out there. Even better, some
FPGA development boards contain a chip that translates USB to PS/2: the physical
connector on the board is a USB socket accepting any modern USB keyboard, but
the FPGA pins are connected to a PS/2 reinterpretation of the incoming data.

16.5 PS/2 keyboard interface 411

16.5.1 Synchronous serial communication

The PS/2 keyboard and mouse interface is a synchronous serial protocol. Syn-
chronous here means that unlike in a UART, there is a separate, explicit clock line; all
data line values are to be sampled on the falling edge of the clock line.

Start 𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 Parity Stop

Data

Clock

The full PS/2 protocol is bidirectional: the computer can send commands to the
peripheral, setting the state of LEDs found on Num Lock and similar keys. Here, we
only look at communication from the keyboard or mouse to the computer. In this
case, the clock and the data lines are both driven by the peripheral. At the lowest
level, sampling a PS/2 port simply means looking at the data line at the appropriate
time:

data PS2 dom = PS2
{ ps2Clk :: "CLK" ::: Signal dom Bit
, ps2Data :: "DATA" ::: Signal dom Bit
}

samplePS2
:: (HiddenClockResetEnable dom)
=> PS2 dom
-> Signal dom (Maybe Bit)

samplePS2 PS2{..} = enable (isFalling low ps2Clk) ps2Data

On some development boards, this author has had problems with noise without
some debouncing applied. Since the clock is specified to run between 10 KHz and
16.7 KHz, we can safely debounce at 1 𝜇s, effectively creating a low-pass filter:

samplePS2
:: forall dom. (HiddenClockResetEnable dom)
=> (KnownNat (ClockDivider dom (Microseconds 1)))
=> PS2 dom -> Signal dom (Maybe Bit)

samplePS2 PS2{..} =
enable (isFalling low (lowpass ps2Clk)) (lowpass ps2Data)

where

Chapter 16 Project: TinyBASIC412

lowpass :: Signal dom Bit -> Signal dom Bit
lowpass = debounce (SNat @(Microseconds 1)) low

The rest of it comes down to making sense of this stream of sampled bits. In this
chapter, we only look at keyboards; mice use the same serial protocol with different
higher-level meaning of packets.

16.5.2 Bytes from bits

The next level of PS/2 is decoding the stream of bits into bytes. The situation here
is very similar to a UART: pulling low indicates the start of a new byte, which is
transmitted as 8 data bits, followed by a parity bit and a high stop bit. The parity
bit is a so-called odd parity, meaning it is low if the data bits have high parity, and
vice versa.

Note how much simpler the code is compared to the UART, since the explicit clock
line allows us to fully decouple the sampling from the decoder state transitions. The
decoder runs in a WriterT that produces a one-byte output at the end of a successful
transmission.

data PS2State
= Idle
| Bit (BitVector 8) (Index 8)
| Parity (BitVector 8)
| Stop (Maybe (Unsigned 8))
deriving (Show, Eq, Generic, NFDataX)

decoder :: Bit -> WriterT (Last (Unsigned 8)) (State PS2State) ()
decoder x = get >>= \case

Idle -> do
when (x == low) $ put $ Bit 0 0

Bit xs i -> do
let (xs', _) = bvShiftR x xs
put $ maybe (Parity xs') (Bit xs') $ succIdx i

Parity xs -> do
put $ Stop $ unpack xs <$ guard (parity xs /= x)

Stop b -> do
when (x == high) $ tell . Last $ b
put Idle

We compute parity efficiently by a binary tree of xor gates built by folding over
the representation bit Vector:

16.5 PS/2 keyboard interface 413

parity :: forall a n. (BitPack a, BitSize a ~ (n + 1)) => a -> Bit
parity = fold xor . bitCoerce @_ @(Vec (BitSize a) Bit)

And finally, as usual, we turn the decoder into a circuit using mealyState, con-
suming the Maybe Bits coming out of the sampler:

decodePS2
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe Bit)
-> Signal dom (Maybe (Unsigned 8))

decodePS2 = mealyState sampleDecoder Idle
where
sampleDecoder = fmap getLast . execWriterT . traverse_ decoder

16.5.3 Packets from bytes

A standard keyboard has 104 keys2, which can be crammed into 7 bits, leaving the
topmost bit to distinguish between press and release events, right?

While a tempting idea, this is not at all how PS/2 works. The actual keyboard
events, as transmitted from the keyboard to the computer, are represented as packets
(called scan codes) containing one or more bytes. These bytes together encode the
event type (pressed or released) and the key code of the key. The simplest case is
the press of a so-called non-extended key: these are one byte only, containing the key
code itself. Key releases are represented by prepending a 0xf0 byte to the key code.
To support more than 255 different keys (0xf0 being taken up for key releases), there
are also extended key codes that use the marker 0xe0 as the first byte.

So putting it all together, the first byte of a PS/2 scan code can either signal an
extended key code, a key release, or it can be the key code of a key press itself. If
it is an extended code, the next byte might still not be the key code itself, since it
itself can be a key release marker. Annoyingly, the release of a key with an extended
scan code is represented as 0xe0 followed by 0xf0 followed by the rest of the code,
instead of the much friendlier 0xf0 followed by 0xe0; this means we can’t just look
at the first byte to distinguish between presses and releases.

Here, we represent extended or non-extended key codes in a unified way as a
9-bit number. Decoded PS/2 bytes are parsed into a scan code by starting in the
Init state, and using a separate Extended state to remember if we should set the
topmost bit of the key code once the full scan code is ready to be assembled.

2105 for some language layouts

Chapter 16 Project: TinyBASIC414

data KeyEvent = KeyPress | KeyRelease
deriving (Generic, Eq, Show, NFDataX)

type KeyCode = Unsigned 9

data ScanCode = ScanCode KeyEvent KeyCode
deriving (Generic, Eq, Show, NFDataX)

data ScanState
= Init
| Extended
| Code KeyEvent Bit
deriving (Show, Generic, NFDataX)

parser :: Unsigned 8 -> WriterT (Last ScanCode) (State ScanState) ()
parser raw = get >>= \case

Init
| raw == 0xe0 -> put $ Extended
| raw == 0xf0 -> put $ Code KeyRelease 0
| otherwise -> finish KeyPress 0

Extended
| raw == 0xf0 -> put $ Code KeyRelease 1
| otherwise -> finish KeyPress 1

Code ev ext -> finish ev ext
where
finish ev ext = do

tell $ pure $ ScanCode ev $ bitCoerce (ext, raw)
put Init

parseScanCode
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Unsigned 8))
-> Signal dom (Maybe ScanCode)

parseScanCode = mealyState byteParser Init
where
byteParser = fmap getLast . execWriterT . traverse_ parser

In simpler cases, we only care about key press events as they come in:

keyPress :: ScanCode -> Maybe KeyCode
keyPress (ScanCode KeyPress kc) = Just kc
keyPress _ = Nothing

16.5 PS/2 keyboard interface 415

16.5.4 Key codes

Interpreting the 9-bit key codes in a ScanCode is not a straightforward manner.
Computers are expected to apply their own keymap to these codes: the same key
code might mean Z with a QWERTY layout, or Q with Dvorak. For the Tiny BASIC,
we will use a hardcoded key map that corresponds to QWERTY: each “normal”
(non-modifier) key is mapped to its lowercase ASCII code. This way, we can feed
the keyboard driver’s output directly into the logicBoard.

charMap :: KeyCode -> Maybe Char
charMap 0x05a = Just '\r'
charMap 0x029 = Just ' '
charMap 0x04c = Just ';'
charMap 0x052 = Just '\''
charMap 0x054 = Just '['
charMap 0x05b = Just ']'
charMap 0x05d = Just '\\'
charMap 0x04a = Just '/'
charMap 0x041 = Just ','
charMap 0x049 = Just '.'
charMap 0x04e = Just '-'
charMap 0x055 = Just '='
charMap 0x045 = Just '0'
charMap 0x016 = Just '1'
charMap 0x01e = Just '2'
charMap 0x026 = Just '3'
charMap 0x025 = Just '4'
charMap 0x02e = Just '5'
charMap 0x036 = Just '6'
charMap 0x03d = Just '7'
charMap 0x03e = Just '8'
charMap 0x046 = Just '9'
charMap 0x01c = Just 'a'
charMap 0x032 = Just 'b'
charMap 0x021 = Just 'c'
charMap 0x023 = Just 'd'
charMap 0x024 = Just 'e'
charMap 0x02b = Just 'f'
charMap 0x034 = Just 'g'
charMap 0x033 = Just 'h'
charMap 0x043 = Just 'i'
charMap 0x03b = Just 'j'
charMap 0x042 = Just 'k'
charMap 0x04b = Just 'l'

Chapter 16 Project: TinyBASIC416

charMap 0x03a = Just 'm'
charMap 0x031 = Just 'n'
charMap 0x044 = Just 'o'
charMap 0x04d = Just 'p'
charMap 0x015 = Just 'q'
charMap 0x02d = Just 'r'
charMap 0x01b = Just 's'
charMap 0x02c = Just 't'
charMap 0x03c = Just 'u'
charMap 0x02a = Just 'v'
charMap 0x01d = Just 'w'
charMap 0x022 = Just 'x'
charMap 0x035 = Just 'y'
charMap 0x01a = Just 'z'
charMap _ = Nothing

asciiMap :: KeyCode -> Maybe (Unsigned 7)
asciiMap = fmap (fromIntegral . ord) . charMap

This mapping is not complete, but should be enough for our purposes. Another
important class of keys are the modifiers, such as Shift or Alt . The PS/2 protocol
signals these keys as pressed or released individually, and it is up to the host to
maintain their state and to assign any meaning to them. In our case, we want to
care about Shift (for obvious reasons) and Ctrl , to detect Ctrl + C and pass
it to the rest of the circuit as an ASCII EOT. For these cases, it is useful to keep the
state of a given key:

keyState
:: (HiddenClockResetEnable dom)
=> KeyCode
-> Signal dom (Maybe ScanCode)
-> Signal dom Bool

keyState target = regMaybe False . fmap fromScanCode
where
fromScanCode sc = do

ScanCode ev kc <- sc
guard $ kc == target
return $ ev == KeyPress

16.5.5 The complete keyboard driver

The keyboard driver for our Tiny BASIC computer consumes the raw PS/2 bit
stream, and produces ASCII codes extended to full bytes, ready to be connected

16.6 Textual video 417

to the ACIA. The Ctrl modifier is detected by watching for key codes 0x014 and
0x114; there are two of them because the PS/2 protocol assigns a different key code
to modifiers on the left and the right side of the keyboard. Similarly, left Shift has
key code 0x012 while the right one is 0x059.

keyboard
:: (HiddenClockResetEnable dom,

KnownNat (ClockDivider dom (Microseconds 1)))
=> PS2 dom
-> Signal dom (Maybe (Unsigned 8))

keyboard ps2 = fmap extend <$> (toChar <$> shift <*> ctrl <*> sc)
where
sc = parseScanCode . decodePS2 . samplePS2 $ ps2

shift = keyState 0x012 sc .||. keyState 0x059 sc
ctrl = keyState 0x014 sc .||. keyState 0x114 sc

toChar shift ctrl sc = case asciiMap =<< keyPress =<< sc of
Just 0x63 | ctrl -> Just 0x03 -- Ctrl-C
Just c | not ctrl -> Just $ shiftASCII shift c
_ -> Nothing

Since Tiny BASIC only accepts keywords in uppercase, we write shiftASCII to
emulate the behavior of the Caps Lock key: for characters above 0x40, unshifted
input produces uppercase, and shifted input produces lowercase. The meaning of
“uppercase” and “lowercase” is also simplified to a single bit flip. This causes, for
example, the double quote " to be mapped to Shift + 2 instead of the more
conventional Shift + ' . Supporting the standard US keyboard layout would
require an unwieldy lookup table instead of the simple bit-twirling logic below.

shiftASCII :: Bool -> Unsigned 7 -> Unsigned 7
shiftASCII shift c
| c > 0x40 = if shift then c `setBit` 5 else c `clearBit` 5
| c > 0x20 = if shift then c `clearBit` 4 else c
| otherwise = c

16.6 Textual video

Showing text in video involves picking the right glyphs from some font and ren-
dering them in the correct positions. These days, computers have no problem with
complicated text layouts composited with other, non-textual images; but the home
computers of the late seventies and eighties had a much simpler notion of textual

Chapter 16 Project: TinyBASIC418

video. In these systems, text was rendered in some monospaced font at a fixed
regular grid. For example, the first version of the Commodore PET, released in
1977, used a text resolution of 40 × 25 characters with a single built-in font.

We can think of these regular grid-based text modes as a special case of tiled
graphics. Instead of containing pixel data directly, each cell in the video RAM stores
the character at the given position, and a separate font memory is consulted to find
the glyph of that character. The font memory can be ROM or RAM depending on
whether user-configurable fonts are supported.

The steps to calculate the value of a pixel at (𝑥, 𝑦) can thus be described in the
following way, handwaving away the details for now:

1. The screen coordinate (𝑥, 𝑦) is converted to a character coordinate and a glyph
coordinate.

2. The character coordinate is used as an address to load the character from video
RAM.

3. The character and the glyph coordinate together is used as an address to load
the right pixel of the glyph from the font.

4. The pixel data is turned into an RGB color. The details of this step depend
on the specifics of the video system; in this chapter, we will use fixed-color
monochrome video. In chapter 18, we will build a computer where each
character cell has an individually configurable background and foreground
color.

Note the data dependency between the first memory access (from video RAM)
and the second memory addressing (to the font memory). Tracking the signal
delay in the type system, as we have done in chapter 13, is going to be even more
important here; otherwise, we get weird, hard-to-debug rendering artifacts of the
“why is every fifth column off by 2 pixels” kind.

Since our Tiny BASIC computer has no way to readback from the text shown
on screen, our video controller in this chapter will provide a write-only interface to
video RAM:

video
:: (HiddenClockResetEnable Dom25)
=> Signal Dom25 (Maybe (TextAddr, Unsigned 8))
-> VGAOut Dom25 8 8 8

video (fromSignal -> w) = delayVGA vgaSync rgb
where
VGADriver{..} = vgaDriver vga640x480at60
-- Continued below

16.6 Textual video 419

A separate component will take care of turning the stream of output characters
coming from the ACIA into video RAM writes.

16.6.1 Character addressing

Turning the raw (𝑥, 𝑦) video coordinate into a character coordinate is a straightfor-
ward matter of scaling; for example, if the font size is 8 × 8 pixels, we can use scale
on both coordinates to convert (𝑥, 𝑦) into (⌊𝑥/8⌋ , ⌊𝑦/8⌋).

(charX, glyphX) = scale @TextWidth (SNat @FontWidth) . center $ vgaX
(charY, glyphY) = scale @TextHeight (SNat @FontHeight) . center $ vgaY

However, we then need to transform that character position (charX, charY) to
a linear address into the video memory.

The easy way out is to make either the horizontal or the vertical textual resolution
a power of 2. For example, suppose we decide on a resolution of 50 × 32 characters.
We can then turn any text coordinate (of type (Index 50, Index 32)) into a linear
address (of type Unsigned 11) by putting the five bits of the vertical address into the
lower bits:

addr :: (Index 50, Index 32) -> Unsigned 11
addr = bitCoerce

Similarly, if the horizontal resolution is a power of 2, we can just flip the repre-
sentation:

addr :: (Index 64, Index 40) -> Unsigned 12
addr (x, y) = bitCoerce (y, x)

This second variant has the added benefit that consecutive characters are stored
at consecutive addresses. So if the rest of the computer wants to display a string,
only the starting address needs any coordinate computation; the rest of it is a simple
manner of iterative incrementing.

However, if we want to create computers based on existing designs, the text
resolution is not a free variable. A Commodore PET needs exactly 40×25 characters
on the screen; moreover, those 1000 characters are stored in a single, contiguous,
1000-byte area of RAM. To address this problem head-on, we will deliberately make
things awkward in this chapter, and use a text resolution of 72 × 50 with a linear
address space of 72 · 50 = 3600 bytes:

Chapter 16 Project: TinyBASIC420

type TextWidth = 72
type TextHeight = 50
type TextSize = TextWidth * TextHeight
type TextAddr = Index TextSize

In this setup, computing the address of the character that is at the currently
drawn raster dot can be by keeping a line address (the base address of the current
line) and a column offset. The line address is incremented whenever the character Y
coordinate changes, and the column offset is incremented every time the character
X coordinate changes. The character address is simply the sum of the two.

(newLine, lineAddr) = addressBy (snatToNum (SNat @TextWidth)) charY
(newChar, charOffset) = addressBy 1 charX

charAddr = lineAddr + charOffset

The reason to keep two counters instead of just one, is because the line address
stays the same for multiple raster lines, as many as the height of the font. For
example, if the font is 8 pixels tall, the column offset needs to sweep the full interval
of 0, 1, . . . , 71 a total of eight times without the line address changing. We can
see the implementation of addressBy takes care to reset the address component
whenever the underlying coordinate is zero; this is precisely to avoid the character
offset “spilling over” into the next line by taking on a value larger than TextWidth.

addressBy
:: (NFDataX coord, NFDataX addr, Num coord, Eq coord, Num addr)
=> (HiddenClockResetEnable dom)
=> addr
-> Signal dom (Maybe coord)
-> (DSignal dom 0 Bool, DSignal dom 1 addr)

addressBy stride coord = (new, addr)
where
start = fromSignal $ coord .== Just 0
new = fromSignal $ changed Nothing coord
addr = delayedRegister 0 $ \addr ->

mux (delayI False start) 0 $
mux new (addr + pure stride) $
addr

Given the character address, we can then use that to load the currently displayed
character from the video RAM. Because the CPU has no read access to the video
RAM, there is no room for access contention: even though we will only use the

16.6 Textual video 421

loaded value when newChar holds, we might as well read from charAddr in every
cycle.

charLoad = delayedRam (blockRam1 NoClearOnReset (SNat @TextSize) 0)
charAddr (delayI Nothing w)

16.6.2 Glyph addressing

The character loaded from video RAM is an index into the font memory; in our case,
the font ROM. The font ROM contains a glyph of each character. Each glyph is a
monochrome mask of a set size; for example, using Marcel Sondaar’s Public Domain
8 × 8 font from https://github.com/dhepper/font8x8, this is what the lowercase letter
“g” looks like:

7654 3210
0 0x00 0b0000_0000
1 0x00 0b0000_0000
2 0x76 0b0111_0110
3 0x99 0b1100_1100
4 0x99 0b1100_1100
5 0x7c 0b0111_1100
6 0x0c 0b0000_1100
7 0xf8 0b1111_1000

7 6 5 4 3 2 1 0

On any given raster line, we will need to render a single row of this image
before switching over to the same row of the next character’s glyph. Therefore, it
makes sense to make the row be the unit of storage for the glyph data. In other
words, the font ROM will contain eight bytes for each glyph; for example, the bytes
0x00 0x00 0x76 0x99 0x99 0x7c 0x0c 0xf8 for the character “g”. To get the 𝑛-th
row of the glyph for character 𝑐, we just look up the byte at address 8𝑐 + 𝑛 in a piece
of ROM. The ROM is loaded with the contents of a font file in the above format:
eight bytes per glyph, row by row.

type FontWidth = 8
type FontHeight = 8

fontRom
:: (HiddenClockResetEnable dom)
=> DSignal dom n (Unsigned 8)
-> DSignal dom n (Index FontHeight)
-> DSignal dom (n + 1) (Unsigned FontWidth)

fontRom char row = delayedRom (fmap unpack . romFilePow2 "font.bin") $
bitCoerce <$> D.bundle (char, row)

https://github.com/dhepper/font8x8

Chapter 16 Project: TinyBASIC422

The current glyph row is loaded from the above fontRom for each newChar by
taking the glyph Y coordinate from the vertical coordinate scaler. We then shift out
the current row into the current pixel; this is similar to the CHIP-8 video controller
from chapter 13. The only reason to start with the highest bit is so that the glyphs
visually match their bit pattern; this is also how fonts were stored in binary format
on most home computers. Of course, if the font data is flipped, we also need to flip
the shift direction.

glyphLoad = fontRom charLoad (delayI Nothing (fromSignal glyphY) .<|
0)
glyphRow = delayedRegister 0x00 $ \glyphRow ->
mux (delayI False newChar) glyphLoad $
(`shiftL` 1) <$> glyphRow

visible = fromSignal $ isJust <$> charX .&&. isJust <$> charY
pixel = enable (delayI False visible) $ msb <$> glyphRow

While the above works for native resolutions, what happens if we want to scale
up, for example, the PET’s 40 × 25 text screen with an 8 × 8 font to the standard
VGA resolution of 640× 480? Each glyph pixel now corresponds to a 2× 2 rectangle
of physical pixels; and that means we should only shift glyphRow whenever the
logical X coordinate (i.e. glyphX) changes. This is exactly the same situation we have
encountered with the CHIP-8 machine, which scaled its 64×32 internal frame buffer
by 10.

newCol = fromSignal $ changed Nothing glyphX
glyphRow = delayedRegister 0x00 $ \glyphRow ->
mux (delayI False newChar) glyphLoad $
mux (delayI False newCol) ((`shiftL` 1) <$> glyphRow) $
glyphRow

We lift this pattern of “left-shifter with reload” for reuse in further chapters.
For versatility, we change it to avoid the extra one-cycle delay via the usual trick of
returning the next value of the register instead of the register itself:

shifterL
:: (BitPack a, HiddenClockResetEnable dom)
=> Signal dom (Maybe a)
-> Signal dom Bool
-> Signal dom Bit

shifterL load tick = msb <$> next
where
r = register 0 next

16.6 Textual video 423

next = muxA
[fmap pack <$> load
, enable tick $ (`shiftL` 1) <$> r
] .|>.
r

We can rewrite the definition of pixel using shifterL by making sure glyphLoad
is only enabled when a new glyph row should be loaded:

glyphLoad = enable (delayI False newChar) $
fontRom charLoad (delayI Nothing (fromSignal glyphY) .<| 0)

newCol = delayI False $ fromSignal $ changed Nothing glyphX
pixel = enable (delayI False visible) $

liftD2 shifterL glyphLoad newCol

Here, liftD2 is a binary verison of liftD written in exactly the same way, just
with two arguments:

liftD2
:: (HiddenClockResetEnable dom)
=> (forall dom'. (HiddenClockResetEnable dom') => Signal dom' a ->
Signal dom' b -> Signal dom' c)
-> DSignal dom d a -> DSignal dom d b -> DSignal dom d c

liftD2 f x y = unsafeFromSignal $ f (toSignal x) (toSignal y)

Finally, it is easy to see that this same approach would work for user-editable
fonts as well. In the most versatile setup, both the character RAM and the font
RAM can be parts of a single main RAM accessible to other parts of the computer
(most notably, the CPU) as well. Character and glyph addresses are resolved by
adding the base addresses of the two memory areas to the addresses computed
from the raster position. The only constraint is that the font must not be wider
than one memory cell. If, for example, we have FontWidth ~ 10 and main memory
containing Unsigned 8 values (i.e. bytes), then loading glyph rows becomes more
complicated than presented here.

16.6.3 Rendering into colors

Nothing new here: we use the same palette-based logic as in the similarly
monochrome CHIP-8. For variety’s sake, we will use a green foreground color,
reminiscent of old phosphorous screens:

Chapter 16 Project: TinyBASIC424

rgb = maybe frame palette <$> pixel

frame = (0x30, 0x30, 0x30)
palette 0 = (0x00, 0x00, 0x00)
palette 1 = (0x33, 0xff, 0x33)

16.7 Screen editing

Our video controller is capable of rendering a full screen’s worth of text, based
on previous writes of characters to screen positions represented by video RAM
addresses. In a “normal” computer, this is usually sufficient, since any software
running on the CPU can do its own internal housekeeping to calculate the correct
coordinates when wanting to print text. This software can either be part of the
user’s program, or provided via operating system routines.

Our Tiny BASIC computer, however, has no program running on it other than
the Tiny BASIC interpreter itself. And since said interpreter was originally written
to do serial I/O via the ACIA chip, it has no functionality to maintain a cursor
position so that subsequent characters can be printed left to right, top to bottom.

In this section, we develop a hardware solution to this problem: a screen editor
circuit that consumes the output serially, and converts it to a sequence of video
RAM writes.

At its simplest, we can exploit that video RAM addresses are linear, and use a
mere counter:

screenEditor
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Unsigned 8))
-> Signal dom (Maybe (TextAddr, Unsigned 8))

screenEditor chr = packWrite <$> addr <*> chr
where
addr = regEn 0 (isJust <$> chr) $ nextIdx <$> addr

However, this has serious limitations when it comes to handling multiple lines
of output. First, let’s add support for consuming newline characters. When the chr
is a newline (ASCII \n 0x0a), the subsequent character should be printed to the first
column of the next row of text. We can use a trick similar to the video controller
to achieve this, by storing the current line’s base address and the current column’s
address offset separately:

16.7 Screen editing 425

screenEditor = mealyState putChar (0, 0)
where
base `offsetBy` x = base + fromIntegral x

stride = snatToNum (SNat @TextWidth)
nextLine = satAdd SatWrap stride

putChar chr = do
(base, x) <- get
case chr of

Nothing -> do
return Nothing

Just 0x0a -> do
put (nextLine base, 0)
return Nothing

Just chr -> do
put (base, nextIdx x)
return $ Just (base `offsetBy` x, chr)

At this point we are also set up to implement line-wrapping: whenever x would
overflow, we increment the base address to point to the next line instead:

Just chr -> do
put $ maybe (nextLine base, 0) (base,) $ succIdx x
return $ Just (base `offsetBy` x, chr)

The other big missing feature of our screen editor is handling running out of
vertical real estate. After 50 lines of output, where should the next line be put? With
our implementation of nextLine, the current position jumps from the last line back
to the first one. This isn’t too bad on its own (we will see an alternative suggestion
as an exercise), but if the newly printed lines are shorter than the previous ones,
the rest of the old first line will remain as garbage to the right of the fifty-first
line. For example, if the first line printed was Clash is awesome, the fiftieth was
Look at the crap that most, a reasonable fifty-first line is HDLs are, but it would
lead to the very misleading HDLs are awesome line being shown at the top of the
screen.

We are going to improve this by clearing the next line when going to a new line.
To clear a line, we want to emit a full line’s worth of space (ASCII 0x20) characters.
Of course, this is going to take some time – 72 cycles, to be exact; during which the
screen editor is unable to process character-printing requests. Luckily, because our
Tiny BASIC computer was designed around serial communication, which is even
slower (a lot slower), we already have a way of doing flow control: the ACIA has
the “output ready” pin for exactly this reason.

Chapter 16 Project: TinyBASIC426

We extend the type of screenEditor to expose a readiness signal in the same
format as our UART: a second output signal of type Bool.

screenEditor
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Unsigned 8))
-> (Signal dom (Maybe (TextAddr, Unsigned 8)), Signal dom Bool)

Our screen editor can now be in one of two states: either accepting requests and
printing them to the next position of the current line, or busy clearing the next line.

data EditorState
= Ready TextAddr (Index TextWidth)
| Clear TextAddr (Index TextWidth)
deriving (Generic, NFDataX)

Not much changes in screenEditor’s implementation beside the state type. The
Clear state just iterates through all values of x before returning to the Ready state;
because we use Clear to prepare the next line for the output that is coming, when
done, we simply set the next output position back to the beginning of the just-cleared
line.

screenEditor = mealyStateB step (Ready 0 0)
where
base `offsetBy` x = base + fromIntegral x

stride = snatToNum (SNat @TextWidth)
nextLine = satAdd SatWrap stride

step chr = do
write <- putChar chr
ready <- gets $ \case

Ready _ _ -> True
Clear _ _ -> False

return (write, ready)

putChar chr = get >>= \case
Clear base x -> do

put $ maybe (Ready base 0) (Clear base) $ succIdx x
return $ Just (base `offsetBy` x, 0x20)

Ready base x -> case chr of
Nothing -> do

return Nothing

16.8 Version 2: Keyboard and video 427

Just 0x0a -> do
put $ Clear (nextLine base) 0
return Nothing

Just chr -> do
put $ maybe (Clear (nextLine base) 0) (Ready base) $

succIdx x
return $ Just (base `offsetBy` x, chr)

16.8 Version 2: Keyboard and video

The keyboard driver, the video driver and the screenEditor, while doing quite a lot
internally, expose the same one-character-at-a-time interface than a UART.

Let’s look at the two versions side by side. First, we have the serial one from
before, repeated here for easy comparison:

topEntity
:: "CLK" ::: Clock System
-> "RESET" ::: Reset System
-> "RX" ::: Signal System Bit
-> "TX" ::: Signal System Bit

topEntity = withEnableGen board
where
board rx = tx
where

outByte = logicBoard inByte outReady
inByte = fmap unpack <$> serialRx (SNat @9600) rx
(tx, outReady) = serialTx (SNat @9600) (fmap pack <$> outByte)

And then the new version, where inByte is fed from the result of decoding the
PS/2 keyboard input, and outByte and outReady are handled by our screenEditor:

topEntity
:: "CLK_25MHZ" ::: Clock Dom25
-> "RESET" ::: Reset Dom25
-> "PS2" ::: PS2 Dom25
-> "VGA" ::: VGAOut Dom25 8 8 8

topEntity = withEnableGen board
where
board ps2 = vga
where

outByte = logicBoard inByte outReady
inByte = keyboard ps2
(vidWrite, outReady) = screenEditor outByte
vga = video vidWrite

Chapter 16 Project: TinyBASIC428

And here we have, in just a handful of lines of code, an interactive home computer
of our own design, running a BASIC interpreter just like the real machines of the
late seventies and early eighties.

Exercises

• Extend the ACIA implementation to provide the full functionality of the Mo-
torola 6850; full datasheets for the chip can be found online. The main fea-
tures to add are configurable bit rates and more extensive error reporting. At
startup, Tiny BASIC writes 0x15 into the control register of the ACIA, which
corresponds to 8 data bits, no parity bit, and one stop bit, with the serial clock
computed from the master clock by dividing by 16. For our Clash implemen-
tation, it makes more practical sense to instead have three hardcoded common
bit rates (e.g. 2400, 9600, and 115,200), so that the main clock period can be
changed independently.

• Hook up the PS/2 keyboard driver to the designs from previous chapters. It
can be used with the CHIP-8 by using some 4 × 4 area of keys; it can be used
with the Brainfuck computer by listening for hexadecimal digits. Similarly, the
calculator extends naturally to allowing keyboard input. As an extra exercise,
instead of replacing the existing keypad or serial input, add the PS/2 input as
an alternative, handling inputs from all peripherals at the same time.

• Implement a cursor to show the position of the next character. This requires
extending the interface of the video controller, to allow other parts of the
circuit to provide a cursor position signal. The screen editor is in a perfect place
to provide that signal. For extra credit, make the cursor blink.

• Instead of wrap-around, implement vertical screen scrolling when the cursor
gets to the last line of the screen. One way of implementing this, that is easy to
do in hardware, is to add a vertical offset input signal to the video controller,
and use that when computing the address of the currently drawn character.
Then, the screen editor can maintain the vertical offset so that it starts at zero,
and remains zero until the last line is used up. When we get to the last line,
the vertical offset increases by one, causing everything on the screen to shift
up by one line, putting the previously first line as the new last one.

16.9 Summary

• Tiny BASIC was originally designed to run on very small and simple comput-
ers, requiring only a single peripheral chip beside the CPU. Our first version
recreated exactly this minimal setup.

16.9 Summary 429

• By decoupling the serialization/deserialization from flow control, we were
able to reuse the same ACIA implementation with other input/output modal-
ities; in this case, we replaced serial input with a keyboard and serial output
with video.

• PS/2 is a synchronous serial protocol which is very easy to implement in
hardware, and gives access to a wide range of off-the-shelf keyboards.

• To implement textual video, we do two levels of indirection: the video memory
contains the characters in each cell, and the font memory contains the shape
of each character; the former is an index into the latter. Other data can also
be stored per cell; for example we could have two bytes for each text position,
one containing the character and the other containing the foreground and
background color.

17Space Invaders

In this chapter, we create a functional replica of Taito’s trailblazing arcade machine
Space Invaders. Released in 1978 to huge commercial success all over the world,
it pushed video gaming to the mainstream, and established a lot of the language
of arcade games, especially for the shoot-’em-up genre. Space Invaders is a great
choice for us not only for its historical relevance, but also because at its heart lies an
Intel 8080 microprocessor.

431

Chapter 17 Space Invaders432

17.1 The design of Space Invaders

Looking at the Space Invaders arcade game as a physical object, it comes in two
formats:

• A roughly human-sized upright cabinet with a CRT screen in portrait orienta-
tion and some buttons in front of it

• A so-called “cocktail table” layout with the screen in the middle, and buttons
on both sides.

It might seem like the screen on the upright cabinet version produces a color
picture, but in reality, it is the same black-and-white CRT as the cocktail table, with
transparent colored overlays at the bottom (green) and the top (red).

Beside the buttons to start a one- or two-player game, and the left/right/fire
buttons, there are three other peripherals on the machine that aren’t immediately
obvious: there is a set of 8 DIP switches to control game settings such as difficulty
or scoring; there is a tilt sensor to detect physical abuse; and finally, but most
importantly to the arcade owners, there is the coin slot.

Already we can see that an arcade machine is designed very differently than a
generic-purpose microcontroller. The whole machine only runs a single game, and
if Space Invaders requires the player to move their ship left/right and fire, then
three buttons of input per player are enough. Similarly, screen orientation and the
color overlays pasted on only make sense for the layout of this one game.

Looking inside, we find the Intel 8080 connected to 8 kB of ROM holding the
game code and 1 kB of generic-purpose RAM. The video system uses a framebuffer
to produce its 256× 224 output image. Since the image is black & white, one bit per
pixel is enough to store the whole frame; putting a run of eight pixels in a byte, this
means a total of 7 kilobytes of video RAM.

Note that the video resolution is given as 256 × 224, not 224 × 256 as one would
expect for a portrait-oriented screen. That is because Taito, of course, didn’t man-
ufacture a custom portrait CRT; instead, a standard 4:3 CRT was put in the cabinet
rotated −90 degrees. The Space Invaders firmware simply produces the image ro-
tated at 90 degrees, so that combined with the physical rotation of the screen, the
resulting image is correct.

The input peripherals (the buttons and the DIP switches) and the sound system
are connected to the CPU via its I/O ports. Audio is generated by a circuit of discrete
analog components; this part of the machine is outside the scope of this book.

There is also a barrel shifter connected to the CPU. Of all the components of the
Space Invaders hardware, this is the most specialized to the game at hand. Since
the video RAM is accessed in units of 8 bits, to draw a pattern (such as an Invader)

17.2 How it fits together 433

anywhere on the screen which is not exactly on an 8 × 8 grid, we need to shift
the bits of pattern data by the right amount of offset. However, the Intel 8080
only has instructions to shift by one bit at a time; and to update a full screen’s
worth of Space Invaders, that would be a lot of shifts in a lot of small loops. The
Space Invaders designers solved this by adding an external chip that reads both the
bits to shift and the shift amount as its two inputs, and produces the shifted bits in
one cycle.

17.2 How it fits together

Now that we have a high-level understanding of the components of the machine, it is
time to dive into the specifics. The Computer Archeology website’s Space Invaders
page at https://www.computerarcheology.com/Arcade/SpaceInvaders/ has been an
invaluable resource for this chapter. Beside detailed descriptions of the memory
and I/O maps, it also contains a complete, commented disassembly of the original
Space Invaders firmware. Since our Intel 8080 core is supposed to be compatible
with the original, if we hook up the right peripherals, we should be able to use the
original firmware as-is, treated as a black box. Nevertheless, the disassembly can
still be an interesting read on software development from a very different era with
very different constraints.

The only hardware difference between the upright cabinet and the cocktail table
versions is that beside the coin slot and the buttons to start a one- or two-player
game, the cabinet only has one set of player input buttons, while the table has two.
This difference is papered over by simply connecting the buttons of the cabinet to
both the player 1 and player 2 input lines. In terms of software, the cocktail table
version includes code to rotate the screen by 180 degrees between the two players
sitting at opposite ends of the table. This is not configurable: the two versions of
the firmware simply shipped as different ROM images.

The input peripherals, the sound circuit and the barrel shifter are connected
to the CPU via I/O ports. The assignment to port numbers is very ad-hoc: for
example, reading from port 2 accesses some of the DIP switches and player two’s
button state; but writing to port 2 sets the shift amount (as a 3-bit number) of the
barrel shifter. The simplest way to deal with this is to just put everything inside
one dedicated “peripheral chip” that can map ReadPort and WritePort requests to
different functionality without any regard to consistency between reads and writes
to the same port. We will also fold the full barrel shifter implementation into this
circuit.

https://www.computerarcheology.com/Arcade/SpaceInvaders/

Chapter 17 Space Invaders434

Thus we arrive at the following high-level design:

8080

Video

I/O

switches

tilt

coin
player1

player2

irq

RAM 1 kB

ROM 8 kB

Video
RAM 7 kB

vga

Communication between the CPU and the video system is via two channels:

• The video RAM is shared between the CPU (with read and write access) and
the video system (with read-only access). Similar to the previous designs, the
video system has priority over the CPU.

• The video system generates an interrupt for the CPU when it gets to raster
lines 96 and 224. This allowed the programmers to update the the game state
and the screen, synchronized to the frame rate, without having to count cycles.

This video-originating interrupt is a godsend for us: while the original hardware
runs the 8080 at 2 MHz, we can run our CPU at the VGA pixel clock speed of 25
MHz, with our own microcode that doesn’t match the timing characteristics of the
original 8080, and still get correct game behavior. Compared to the real hardware,
our CPU simply wastes more cycles waiting for the next interrupt request.

17.3 Peripherals

We present all peripheral input and the barrel shifter to the CPU as a single,
PortCommand-controlled component. The only peripheral output would be audio,
which is outside the scope of this book.

declareBareB [d|
data Player = MkPlayer
{ pLeft, pRight, pShoot, pStart :: Bool
}
deriving (Generic, NFDataX) |]

17.3 Peripherals 435

peripherals
:: forall dom. HiddenClockResetEnable dom
=> Signal dom (BitVector 8)
-> Signal dom Bool
-> Signal dom Bool
-> Signal dom (Pure Player)
-> Signal dom (Pure Player)
-> Signal dom (Maybe (PortCommand (Index 7) (Unsigned 8)))
-> Signal dom (Unsigned 8)

The total of 18 input bits are mapped to three bytes (read via the first three ports),
in a fairly ad-hoc way, with some unused bits set to 0, some to 1:

portBytes
:: BitVector 8
-> Bool
-> Bool
-> Pure Player
-> Pure Player
-> (Unsigned 8, Unsigned 8, Unsigned 8)

portBytes sws tilt coin p1 p2 =
(bitCoerce inp0, bitCoerce inp1, bitCoerce inp2)

where
inp0 = (low, joy p1, high, high, high, sws!4)
inp1 = (low, joy p1, high, pStart p1, pStart p2, coin)
inp2 = (sws!7, joy p2, sws!6, tilt, sws!5, sws!3)

joy MkPlayer{..} = (pRight, pLeft, pShoot)

Writing to port 2 or 4, or reading from port 3, accesses the barrel shifter. The
state of our circuit is the Index 8 of the shift amount and the BitVector 16 with the
shifted 8-bit value. When a new 8-bit value is written to port 4, it is shifted in from
the right:

startAt
:: Index 8
-> BitVector 16
-> Unsigned 8

startAt offset value = result
where
(result, _) = unpack shiftedValue :: (Unsigned 8, Unsigned 8)
shiftedValue = value `rotateL` fromIntegral offset

Chapter 17 Space Invaders436

shiftIn
:: forall n. (KnownNat n)
=> Unsigned n
-> BitVector (2 * n)
-> BitVector (2 * n)

shiftIn new old = pack (new, old1)
where
(old1, _old2) = unpack old :: (Unsigned n, Unsigned n)

The complete implementation of peripherals dispatches to the appropriate
portBytes component, updates the barrel shifter state, or simply returns a zero
result:

peripherals sws tilt coin p1 p2 cmd =
mealyStateB (uncurry step) (0, 0) (inputs, cmd)

where
inputs = portBytes <$> sws <*> tilt <*> coin <*> p1 <*> p2

step (inp0, inp1, inp2) cmd = fmap fromJustX $ for cmd $ \case
ReadPort 0 -> do

return inp0
ReadPort 1 -> do

return inp1
ReadPort 2 -> do

return inp2
ReadPort 3 -> do

gets $ uncurry startAt
WritePort 2 x -> do

_1 .= fromIntegral x
return 0x00

WritePort 4 x -> do
_2 %= shiftIn x
return 0x00

_ -> return 0x00

17.4 Video

On the original hardware, video output is monochrome 256 × 224 at 60Hz. The
straightforward way for us to implement this is to generate a 512 × 448 image
(scaled up by two), and center it on a 640× 480 VGA mode. Of course, if we connect
it to a screen, it will display the picture rotated by 90 degrees clockwise; to replicate
the original Space Invaders design, we will need to physically rotate the screen into
portrait orientation.

17.4 Video 437

It is tempting to instead do the rotation in the video generator: after all, a 90-
degree rotation is a simple matter of changing the order in which the video RAM is
accessed1. However, the video system also acts as a timing source for the CPU, with
interrupts generated on lines 96 and 224. The software is well within its rights to use
this information to, for example, update only the upper (already drawn) half of the
screen in the interrupt handler for line 96, without causing any graphical glitches.
But if we change the video system to rotate the screen by 90 degrees, there is no
single “line 96” anymore: what used to be a single horizontal line, is now spread
out over 256 raster lines.

The interface presented by the video driver to the rest of the system consists of
three parts:

• The VGA signal going to the outside world, as always.

• Address and write inputs and read output for accessing the video RAM. These
read/write requests are to be served at a lower priority than the internal read
requests of the video system.

• An end-of-line signal to be used in the interrupt generator. We will generate
a single-period spike at the end of each line containing the line number; so
instead of “line 96”, it will be “the end of line 95”.

type VidX = 256
type BufX = VidX `Div` 8
type VidY = 224
type BufX = VidY
type VidSize = BufX * BufY
type VidAddr = Index VidSize

video
:: (HiddenClockResetEnable Dom25)
=> Signal Dom25 (Maybe VidAddr)
-> Signal Dom25 (Maybe (Unsigned 8))
-> (VGAOut Dom25 8 8 8

, Signal Dom25 (Maybe (Unsigned 8))
, Signal Dom25 (Maybe (Index VidY))
)

Similar to previous video drivers, we will use DSignals internally to match the
VGA sync signals with the delay caused by accessing the video RAM. The external

1Or at least, it would be, if we didn’t store a whole strip of eight pixels in one byte. In the natural
orientation, we can fetch one byte from video RAM and then shift out its bits for 8 consecutive pixels.
With rotation applied, pixels next to each other each come from different bytes; this would complicate
the video driver, and also give less time for the CPU to access video RAM.

Chapter 17 Space Invaders438

address and write request arguments are lifted directly into the DSignal world via
unsafeFromSignal. On the output side, the current line number is synchronized to
the delay of the rest of the video driver.

video (unsafeFromSignal -> extAddr) (unsafeFromSignal -> extWrite) =
(delayVGA vgaSync rgb
, toSignal extRead
, matchDelay rgb Nothing line
)

where
-- Continued below

To calculate the video buffer address, we start with a 640×480 physical coordinate,
and apply scaling and centering to calculate the following derived coordinates:

• (bufX, bufY) is a coordinate in the 32 × 224 space of video RAM addresses.
Because the rows are 32 bytes apart, we can calculate the video RAM address
simply by taking the X coordinate as the bottom five bits and the Y coordinate
as the rest:

toVidAddr :: Index BufX -> Index BufY -> VidAddr
toVidAddr x y = bitCoerce (y, x)

• pixX is the X coordinate of the current pixel in the current 8-pixel strip.

• scanline is the index of the current scan line for the current logical line. Since
we are scaling vertically by 2, this will keep changing between the values 0
and 1. Together with bufY, we use this to determine the end of a logical line
and emit the line number.

We start the implementation of video with the definitions corresponding to the
above, moving everything into DSignals:

VGADriver{..} = vgaDriver vga640x480at60

(fromSignal -> bufX, fromSignal -> pixX) =
scale (SNat @8) . fst .
scale (SNat @2) . center $
vgaX

(fromSignal -> bufY, fromSignal -> scanline) =
scale (SNat @2) . center $
vgaY

bufAddr = liftA2 toVidAddr <$> bufX <*> bufY

17.4 Video 439

lineEnd =
liftD (isFalling False) (isJust <$> bufX) .&&.
scanline .== Just maxBound

line = guardA lineEnd bufY

The actual pixel values will come from an 8-bit block that is updated from the
video buffer whenever bufAddr changes, and is shifted when pixX changes. For now,
let’s just suppose that we already have a way of getting the internal video buffer
read result intRead from the internal address intAddr; we will revisit this point
shortly.

intAddr = guardA (liftD (changed Nothing) bufAddr) bufAddr

intRead = -- See next section
extRead = -- See next section

newPix = delayI False $ liftD (changed Nothing) pixX
visible = delayI False $ isJust <$> bufAddr
pixel = enable visible $ liftD2 shifterR intRead newPix

Note that we shift block to the right on every new pixel, and read from its least
significant bit, unlike we did in the earlier chapters of the CHIP-8 and in the text-
mode video driver of our own design. This is simply how the video data is stored
on the Space Invaders machine; of course, we have to match the original layout,
because the software is written with this assumption as it writes full bytes to the
video memory. The implementation of shifterR is the same as shifterL, with msb
replaced with lsb, and shiftL replaced with shiftR:

shifterR
:: (BitPack a, HiddenClockResetEnable dom)
=> Signal dom (Maybe a)
-> Signal dom Bool
-> Signal dom Bit

shifterR load tick = lsb <$> next
where
r = register 0 next

next = muxA
[fmap pack <$> load
, enable tick $ (`shiftR` 1) <$> r
] .|>.
r

At this point, we are at the victory lap: pixel indexes into a palette, as usual.

Chapter 17 Space Invaders440

rgb = maybe border palette <$> pixel

border = (0x30, 0x30, 0x30)
palette 0 = (0x00, 0x00, 0x00)
palette 1 = (0xff, 0xff, 0xff)

17.4.1 Shared memory

Previously, we have encountered several situations where a piece of RAM is shared
between the video signal generator and some other system:

• In the TinyBASIC computer, the screen editor takes the incoming stream of
characters and turns them into video text buffer writes. Reading is only done
by the video system.

• In the CHIP-8, the CPU both reads from and writes to video RAM. We multi-
plexed reads by prioritizing the video system; but writes always went through
directly to video RAM, exploiting the dual-port nature of FPGA block RAM
primitives.

Here, we are finally in a good situation to handle shared memory to its fullest
extent in a more principled way. The key to this is that our 8080 core, just like the
real thing, is prepared for be preempted in its memory access, both for reading and
writing. This gives us the opportunity to move completely to a single-port RAM
model.

But if the underlying block RAM primitives remain dual port, what is the point
of adding a more complicated version of the contention resolution logic? One
advantage is that it simply models better the constraints that had to be handled by
designs of the era we are interested in. The other is that it generalizes to more than
one client with write access.

It is instructive to start from a version of intRead / extRead that is maximally
naïve: using two copies of video RAM, connecting the same write requests to both.

wr = liftA2 (,) <$> extAddr <*> extWrite
vidRam = delayedRam (blockRam1 NoClearOnReset (SNat @VidSize) 0)
intRead = Just <$> vidRam (intAddr .<| 0) wr
extRead = Just <$> vidRam (extAddr .<| 0) wr

Here, of course, both read results are valid in all cycles; we have no contention,
and there is always a read address available (the real address, or 0 otherwise).

The first improvement we can do is to make intRead and extRead only contain
Just a value in this cycle if its corresponding address was set in the previous cycle.

17.4 Video 441

intRead = enable (delayI False $ isJust <$> intAddr) $
vidRam (intAddr .<| 0) wr

extRead = enable (delayI False $ isJust <$> extAddr) $
vidRam (extAddr .<| 0) wr

The next step is to remove the redundancy of two copies of vidRam. We do this
the same way we did it in the CHIP-8: by computing the effective address addr, and
only enabling intRead and extRead if the address is theirs.

isInt = isJust <$> intAddr
isExt = not <$> isInt .&&. isJust <$> extAddr

addr =
mux isInt intAddr $
mux isExt extAddr $
pure Nothing

read = vidRam (addr .<| 0) wr
intRead = enable (delayI False isInt) read
extRead = enable (delayI False isExt) read

This is a deliberately long-winded way of writing the same code as in the CHIP-8,
without any benefit so far. However, we can use the information in isInt and isExt
to multiplex the writes as well as the reads.

First of all, to keep ourselves honest, let’s change vidRam so that it enforces a
single-port protocol:

singlePort
:: (Applicative f)
=> (f addr -> f (Maybe (addr, wr)) -> r)
-> (f addr -> f (Maybe wr) -> r)

singlePort mem addr wr = mem addr (packWrite <$> addr <*> wr)

vidRam = singlePort $ delayedRam $
blockRam1 NoClearOnReset (SNat @VidSize) 0

Now, we can’t set the write address independently of the read address. Accord-
ingly, the external write value should only be used when the address is the external
one. We could write this as guardA isExt extWrite; we opt for the more verbose
version to suggest its generalization to multiple write sources.

wr = mux isInt (pure Nothing) $
mux isExt extWrite $
pure Nothing

Chapter 17 Space Invaders442

We implement the generalization of this schema that works for an arbitrary
number of requests (passed in priority order) and for any single-port component,
be it ROM or RAM:

sharedDelayed
:: (KnownNat k, HiddenClockResetEnable dom)
=> (DSignal dom d (Maybe req) -> DSignal dom (d + k) a)
-> Vec (n + 1) (DSignal dom d (Maybe req))
-> Vec (n + 1) (DSignal dom (d + k) (Maybe a))

In the ROM case, req can be the address directly. In the RAM case, we will
choose req to be the pair of an addr and a write request Maybe wr:

sharedDelayedRW
:: (KnownNat k, KnownNat n, HiddenClockResetEnable dom)
=> (DSignal dom d addr ->

DSignal dom d (Maybe wr) ->
DSignal dom (d + k) a)

-> Vec (n + 1) (DSignal dom d (Maybe (addr, Maybe wr)))
-> Vec (n + 1) (DSignal dom (d + k) (Maybe a))

sharedDelayedRW ram =
sharedDelayed $ uncurry ram . D.unbundle . (.<| (undefined, Nothing))

In the implementation of sharedDelayed, we first go through the collection of
requests, and only enable later ones if all the earlier ones contain Nothing. This
ensures at most one address at a time is Just – the effective address is then this
single address, and its position also indicates which of the output reads should be
populated from the actual, memory-originating read value.

sharedDelayed mem reqs = reads
where
addrs = snd $ mapAccumL step (pure True) reqs
where

step en addr = (en .&&. isNothing <$> addr, guardA en addr)

addr = muxA addrs

read = mem addr
selectedBy addr = enable (delayI False $ isJust <$>addr)
reads = map (\addr -> selectedBy addr read) addrs

Using this infrastructure, we can now implement the shared video memory in a
clean and high-level way:

17.5 Logic board 443

intRead :> extRead :> Nil = sharedDelayedRW ram $
noWrite intAddr :>
extAddr `withWrite` extWrite :>
Nil

where
ram = singlePort $ delayedRam (blockRam1 NoClearOnReset (SNat
@VidSize) 0)

This uses the following two utility functions to convert address/write pairs into
sharedDelayed’s format:

withWrite
:: (Applicative f)
=> f (Maybe addr)
-> f (Maybe wr)
-> f (Maybe (addr, Maybe wr))

withWrite = liftA2 $ \addr wr -> (,wr) <$> addr

noWrite
:: (Applicative f)
=> f (Maybe addr)
-> f (Maybe (addr, Maybe wr))

noWrite addr = addr `withWrite` pure Nothing

17.5 Logic board

We have all the components from our initial schematics, so it is time to put them all
together:

• I/O ports 0 to 7 connect to the peripheral driver.

• ROM of 8 kB starts at address 0x0000.

• The same 1 kB RAM is connected from 0x2000 and 0x4000. This is called
mirroring: basically, only the lower 10 bits of the address matter, as long as
the top 6 ones match. If we write to 0x2345, afterwards we can read the same
value from 0x4345.

• The 7 kB address range starting at 0x2400 is connected to the video system.

Furthermore, the currently drawn line is turned into an interrupt request: at the
end of lines 95 and 223, we generate a RST 1 and RST 2 interrupt, respectively. We
have already written the interruptor to implement the 8080 interrupt protocol; we
can just feed it the reset vector numbers.

Chapter 17 Space Invaders444

mainBoard
:: (HiddenClockResetEnable dom)
=> Signal dom (BitVector 8)
-> Signal dom Bool
-> Signal dom Bool
-> Signal dom (Pure Player)
-> Signal dom (Pure Player)
-> Signal dom (Maybe (Unsigned 8))
-> Signal dom (Maybe (Index VidY))
-> (Signal dom (Maybe VidAddr), Signal dom (Maybe (Unsigned 8)))

mainBoard sws tilt coin p1 p2 vidRead line = (vidAddr, vidWrite)
where
CPUOut{..} = intel8080 CPUIn{..}

(interruptRequest, rst) =
interruptor irq (delay False _interruptAck)

irq =
mux (line .== Just 95) (pure $ Just 1) $
mux (line .== Just 223) (pure $ Just 2) $
pure Nothing

dataIn = Just 0 |>. dataIn'
(dataIn', (vidAddr, vidWrite)) =

$(memoryMap [|_addrOut|] [|_dataOut|] $ do
rom <- mapH [|Just|] =<<

romFromFile (SNat @0x2000) [|"SpaceInvaders.bin"|]
ram <- mapH [|Just|] =<< ram0 (SNat @0x0400)
io <- mapH [|Just|] =<<

port_ @(Index 7) [|peripherals sws tilt coin p1 p2|]
(vid, vidAddr, vidWrite) <- conduit @VidAddr [|vidRead|]

override [|fmap Just <$> rst|]

matchJust $ do
matchLeft @(Unsigned 8) $ do

from 0x00 $ connect io
matchRight @(Unsigned 16) $ do

from 0x0000 $ connect rom
from 0x2000 $ connect ram
from 0x2400 $ connect vid
from 0x4000 $ connect ram

return (vidAddr, vidWrite))

17.5 Logic board 445

The new memory map description primitives used here are:

• port_, which is exactly what it says on the tin: a version of port without
backpane connections:

type Port_ dom addr dat =
Signal dom (Maybe (PortCommand addr dat)) -> Signal dom dat

port_
:: forall addr' addr. ()
=> ExpQ {- Port_ dom addr dat -}
-> Addressing addr (Handle addr')

port_ mkPort = readWrite_ $ \addr wr ->
[| let read = $mkPort $ portFromAddr $addr $wr

in delay undefined read
|]

• override, which takes a Maybe dat-valued signal, and replaces the read value
with it when it is a Just. We use it to feed the RST machine code created by
the interruptor to the CPU.

override
:: ExpQ
-> Addressing addr ()

override sig = Addressing $ do
rd <- lift . lift $ newName "rd"
let decs = [d| $(varP rd) = $sig |]
tell (decs, mempty, [varE rd])

Unlike in the previous chapter, here we need to handle memory access con-
tention. All internal, unshared memory components return a result immediately
in the next cycle, which is why they are used via mapH [|Just|]. The value from
vidRead, however, can be Nothing when the video controller is fetching the next
8-pixel block.

The top-level circuit then needs to connect mainBoard to video, and hook up
all the external inputs. On an FPGA development board with five directional
pushbuttons, we have just enough inputs for one player and the coin deposit. To
still support two players, we take a page from the original upright arcade machine,
and connect the same buttons to both p1 and p2 inputs.

Chapter 17 Space Invaders446

topEntity
:: "CLK_25MHZ" ::: Clock Dom25
-> "RESET" ::: Reset Dom25
-> "SWITCHES" ::: Signal Dom25 (BitVector 8)
-> "BTN" ::: ("CENTER" ::: Signal Dom25 (Active High)

, "UP" ::: Signal Dom25 (Active High)
, "DOWN" ::: Signal Dom25 (Active High)
, "LEFT" ::: Signal Dom25 (Active High)
, "RIGHT" ::: Signal Dom25 (Active High)
)

-> "VGA" ::: VGAOut Dom25 8 8 8
topEntity = withEnableGen board
where
board sws (c, u, d, l, r) = vga
where

tilt = pure False
coin = fromActive <$> c

p1 = MkPlayer
{ pLeft = fromActive <$> l
, pRight = fromActive <$> r
, pShoot = fromActive <$> u
, pStart = fromActive <$> d
}

p2 = p1
{ pStart = fromActive <$> l .&&. fromActive <$> r
}

(vga, vidRead, line) = video vidAddr vidWrite
(vidAddr, vidWrite) = mainBoard

sws tilt coin
(bundle p1)
(bundle p2)
vidRead
line

17.6 Simulation

For simulation purposes, we take the logicBoard, and interpret its video write
outputs to produce the screen image. Each write goes straight to varr, a mutable
array of bytes, so that we can later retrieve it into vidRead.

17.6 Simulation 447

video
:: IOArray VidAddr (Unsigned 8)
-> Maybe VidAddr
-> Maybe (Unsigned 8)
-> IO (Maybe (Unsigned 8))

video varr vidAddr vidWrite = for vidAddr $ \addr -> do
vidRead <- readArray varr addr
traverse_ (writeArray varr addr) vidWrite
return vidRead

Similar to the CHIP-8, we also write an accompanying function that turns the
contents of that array into a pattern by taking apart the eight bits per byte into eight
pixels.

rasterizeVideoBuf
:: (MonadIO m)
=> IOArray VidAddr (Unsigned 8)
-> m (Rasterizer VidX VidY)

rasterizeVideoBuf varr = do
arr <- liftIO $ freeze varr
return $ rasterizePattern $ \x y ->
let (addr, i) = toAddr x y

block = arr ! addr
in if testBit block (fromIntegral i) then fg else bg

where
toAddr x y = (addr, i)
where

(x0, i) = bitCoerce x :: (Index BufX, Index 8)
addr = bitCoerce (y, x0)

fg = (0xff, 0xff, 0xff)
bg = (0x00, 0x00, 0x00)

In fact, we can do one better: by simply changing the mapping of the pattern
rasterizer’s coordinates, we can draw the image with a -90 degree rotation applied,
so that it is displayed right-side up. First, we change the rasterizer size in the return
type of rasterizeVideoBuf:

rasterizeVideoBuf
:: (MonadIO m)
=> IOArray VidAddr (Unsigned 8)
-> m (Rasterizer VidY VidX)

Then, the only term-level change needed is in the computation of the address:

Chapter 17 Space Invaders448

let (addr, i) = toAddr (maxBound - y) x

The rest of the simulator is a straightforward matter of mapping the SDL key-
board state to Space Invaders input signals. The same keys are mapped to player
1 and player 2’s inputs, except for the buttons that start a new one- or two-player
game.

inputs
:: (Scancode -> Bool)
-> (BitVector 8, Bool, Bool, Pure Player, Pure Player)

inputs keyDown = (sws, tilt, coin, p1, p2)
where
sws = 0b0000_0000
tilt = False
coin = keyDown ScancodeC

p1 = MkPlayer
{ pLeft = keyDown ScancodeLeft
, pRight = keyDown ScancodeRight
, pShoot = keyDown ScancodeLCtrl
, pStart = keyDown ScancodeReturn
}

p2 = p1
{ pStart = keyDown ScancodeLShift
}

In terms of timing, we need to run the simulation of the main board for multiple
cycles per frame, making sure interrupts are generated by injecting the correct
line values. In a real Space Invaders arcade machine running the CPU at 2 MHz,
there would be 33 thousand cycles per video frame. In our implementation, since
the whole circuit runs at 25 MHz, we would need to run 418 thousand cycles in
simulation per frame.

However, the CPU would mostly spend its time busy-waiting for the next inter-
rupt, and we would get horrible simulation performance. Instead, we can run the
main board for just 5,000 cycles between interrupts (for a total of 10,000 cycles per
frame), and still have everything working. This 5,000 figure is determined empiri-
cally; going too much below it means the CPU doesn’t get enough time to finish all
game state updates due to one interrupt before the next one arrives.

17.6 Simulation 449

main :: IO ()
main = do

varr <- newArray (minBound, maxBound) 0

let p0 = MkPlayer False False False False
sim <- simulateIO_ @System

(bundle . uncurryN mainBoard . unbundle)
(0x00, False, False, p0, p0, Nothing, Nothing)

withMainWindow videoParams $ \events keyDown -> do
guard $ not $ keyDown ScancodeEscape

let (sws, tilt, coin, p1, p2) = inputs keyDown
liftIO $ do

let run line = sim $ uncurryN $ \ vidAddr vidWrite -> do
vidRead <- video varr vidAddr vidWrite
return (sws, tilt, coin, p1, p2, vidRead, line)

replicateM_ 5000 $ run Nothing
run (Just 95)
replicateM_ 5000 $ run Nothing
run (Just maxBound)

rasterizeVideoBuf varr
where
videoParams = MkVideoParams

{ windowTitle = "Space Invaders"
, screenScale = 4
, screenRefreshRate = 60
}

Exercises

• Implement screen rotation in the video driver. But wait, haven’t we concluded
that this is not a good idea because of interrupt timing? We can work around
that by completely detaching the rotation from the initial rasterization. The
idea is to draw on a virtual 256× 224 screen (in reality, a memory buffer) from
the video system, in the natural orientation, raising interrupts on lines 96 and
224. A second, real VGA signal generator reads from this buffer and rasterizes
its contents in the rotated orientation.

• Implement a virtual simulation of the colored transparent overlays. In the
upright cabinet version of Space Invaders, strips of translucent decal was
affixed to the screen: red at the top (where the bonus UFO flies across every
now and then), and green at the bottom (where the cover buildings are and

Chapter 17 Space Invaders450

where the remaining lives are shown). We can implement this by changing
the color palette based on the bufX and bufY coordinates.

• Implement PS/2 keyboard input by using keyState of appropriately chosen
keys, connected to coin and p1 and p2’s signals. Similarly, allow toggling the
switches by pressing F1 to F8 .

• Although fully gratuitous, adventurous spirits might want to look into inter-
facing with accelerometers to implement the tilt input.

17.7 Summary

The great thing about this chapter is how little new code we needed to write to get
a playable Space Invaders machine!

• The Space Invaders firmware does all time-sensitive operations tied to video
interrupts, which freed us from worrying not just about precise timing issues
due to differences between our 8080 microcode and a real Intel 8080, but even
allowed us to use the VGA pixel clock as our CPU clock, even though that is
more than ten times faster than the original Space Invaders hardware’s CPU.

• We handle shared memory by ordering the address/write inputs by priority,
and letting only the highest one go through. Read results are then routed to
the single corresponding output signal.

• External memory-mapped peripherals can be included in our address de-
coder infrastructure by exposing a version of the address and the write lines
that are restricted to the given address sub-range, as implemented by the
conduit combinator.

18Compucolor II

In this final chapter, our capstone project takes everything we have learned so
far, and integrates the components we have developed to produce a replica of the
Compucolor II home computer from 1977.

The reason for choosing this machine from the myriad of late-seventies and early-
eighties home computers is that it is one of the earlier, cheaper, simpler designs, and
at its heart is the same Intel 8080 CPU that we have already examined in detail.
On the other hand, it is recognizably a home computer fit for consumer use, not a
clunky kit computer: it features a keyboard for input, color graphics on a video
screen for output, a floppy drive for storage, and a built-in BASIC interpreter for
user interaction.

The treasure trove of information on all things Compucolor is the Compucolor II
Tribute at https://compucolor.org/. Beside technical documentation and a software
emulator, this website also contains hundreds of downloadable floppy disk images
for use once we get our machine working.

18.1 Design

After Intelligent Systems Corporation’s first two products, the Intercolor 8001 and the
Compucolor 8001 terminals, their third product aimed to be a standalone computer
that is cheap enough to target the home user market. Its distinguishing features
were to be the included floppy drive, the color display supporting both text and
graphics, and, staying close to its terminal ancestors, a serial port. The electronics,
the floppy drive, and the 13” color CRT screen was all built into one cabinet, with a
separate QWERTY keyboard that came in three different sizes.

Owing to its design goal of good value at low cost, the complete computer is
made up of a very small number of components:

• At the core, we find the Intel 8080 CPU with 16 kB of ROM, and 8, 16, or 32 kB
of RAM depending on the model.

451

https://compucolor.org/

Chapter 18 Compucolor II452

• The CRT is a standard color TV with the tuner removed. Because the TV was
originally designed for the US market, it is refreshed at 60 Hz.

• The video signal is generated by the CRT 5027 video controller, originally
designed for text only. As we will see, the graphics mode was achieved with
a cleverly designed character set.

• Everything else was handled by a single TMS 5501 I/O controller: keyboard
scanning, timers, interrupt generation, and serial communication.

Notably missing from the above list is the floppy drive controller. That is because,
in the name of cost-cutting, the Compucolor II floppy drive had no controller logic
at all: the stepper motor moving the head between tracks is connected to three bits
of the TMS 5501’s parallel data port (the same port used for keyboard scanning),
and the head itself is connected directly to the serial line. Everything else, most
importantly finding the start of sectors, is handled in software. As we will see, this
design decision places very stringent timing requirements on our implementation
to keep compatibility.

Software-wise, the 16 kB ROM boots directly to a BASIC interpreter; the included
File Control System can be accessed by pressing Esc followed by the D key. FCS
has simple commands for file operations like listing the directory of a disk, or
copying files.

The connections between the components are as we would expect them: the
TMS 5501 and the control ports of the CRT 5027 are exposed to the CPU as I/O
ports, while the actual video contents is stored in 4 kB of RAM shared between the
video driver and the CPU. This video RAM is mapped both from 0x6000 and from
0x7000, with an important distinction: when accessed from 0x7000, the video signal
generator takes precedence, only allowing CPU access during the vertical blanking
period; however, when accessed from 0x6000, the CPU gets priority, at the cost of
visual artefacts.

The complexity of this schematic suggests we have our work cut out for us: the
components we have to implement are the TMS 5501 and the CRT 5027 peripherals
and a virtual floppy drive that can be controlled by the same TMS 5501 operations
as the real one.

We could just go through this list, implement each element according to its
specification from the original documentation, and then assemble the full computer
and hope for the best. Instead, we will chart a way that starts with a minimal viable
Compucolor II and iteratively adds more and more components and features until
we arrive at our intended fidelity:

1. We start with just the CPU and the memory elements, interpreting video
memory writes in simulation as textual output. This will allow us to boot the

18.1 Design 453

5501

serial

kbdRow

kbdCols

Floppy
drive

5027 video

blink
8080

irq

RAM 32 kB

ROM 16 kB

Video
RAM 4 kB

original ROM and get all the way to the BASIC prompt, albeit without a way
to input anything yet.

2. Next, we will extend this simulator to produce color output and use the
original font ROM, by rasterizing into an SDL surface. The purpose of this
step is to give a simple software environment to experiment with the intended
meaning of the video memory contents.

3. Using our experience with text-based video generators, and taking the soft-
ware implementation of the previous step as a guideline, we implement the
video signal generator part of the CRT 5027, followed by its CPU-controlled,
higher-level features.

4. The previous step will leave us with a tantalizing blinking cursor at the BASIC
prompt, so the obvious next step is focusing on the parts of the TMS 5501
needed to get keyboard input working: the parallel I/O port, timers, and
interrupt generation. At the end of this step, we will be able to type in and
run BASIC programs.

5. As any Haskell programmer would know, typing is cool! But typing in pro-
grams is not so much. We want to load programs from the Compucolor II’s
existing software library. This will involve extending the TMS 5501 for serial
communication, implementing a virtual floppy drive with a virtual magnetic

Chapter 18 Compucolor II454

head sliding over a virtually rotating virtual disk, and a detour into improving
the accuracy of our Intel 8080 implementation.

6. The finishing touch will be slowing down the CPU so that games written with
the assumption of a 2 MHz processor will not be unplayable with our 40 MHz
clock.

18.2 A Minimal Viable Compucolor II

The simplest possible machine that can still boot the original Compucolor II ROM is
a computer with only the CPU, ROM, and RAM. To emphasize that this is a minimal
configuration, we have also put only 8 kB of RAM instead of the maximum 32 kB,
corresponding to the cheapest model available at Compucolor II’s premier.

8080RAM 8 kB

ROM 16 kB

Video
RAM 4 kB

One problem with this much minimalism is that it also cuts away the fun part,
i.e. seeing the machine in motion. To see why, just note that this is a completely closed
system, with no input/output. From the outside, the only thing this computer
would produce is heat.

We work around this problem by removing even more: similar to our Space
Invaders simulator, we externalize the video RAM so that we can interpret its
contents in software:

8080RAM 8 kB

ROM 16 kB

vidAddr
vidRead

vidWrite

The corresponding code is a straightforward analogue of the Space Invaders
main board without input peripherals and interrupt generators:

18.2 A Minimal Viable Compucolor II 455

type VidAddr = Index 4096

mainBoard
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Unsigned 8))
-> (Signal dom (Maybe VidAddr)

, Signal dom (Maybe (Unsigned 8))
)

mainBoard vidRead = (vidAddr, vidWrite)
where
CPUOut{..} = intel8080 CPUIn{..}
interruptRequest = pure False

dataIn = Just 0 |>. dataIn'
(dataIn', (vidAddr, vidWrite)) =

$(memoryMap [|_addrOut|] [|_dataOut|] $ do
rom <- mapH [|Just|] =<<

romFromFile (SNat @0x4000) [|"compucolor.bin"|]
ram <- mapH [|Just|] =<< ram0 (SNat @0x2000)
(vid, vidAddr, vidWrite) <- conduit @VidAddr [|vidRead|]

matchJust $ matchRight @(Unsinged 16) $ do
from 0x0000 $ connect rom
from 0x6000 $ connect vid
from 0x7000 $ connect vid
from 0x8000 $ connect ram

return (vidAddr, vidWrite))

We have mapped the 4 kB video RAM both from 0x6000 and 0x7000, but there
is no way to distinguish between the two access paths yet. For the high-level
simulation interpreting the contents of the video memory, the distinction doesn’t
matter, since all read and write access can go through immediately. Of course,
when we get to implementing a real hardware video signal generator, we will have
to return to this point.

But enough worrying about the future, let’s take what we have and boot it
up! Once again, we turn to the Terminal package to take care of single character
positioning. As usual, we create an IOArray to store the video memory contents;
then, once every couple of cycles, we update our output based on the array. We pick
the number of cycles, 20,000, mostly arbitrarily: too small a number would mean
we waste a lot of time updating the screen without giving the CPU the opportunity
to do anything; too large, and the simulator would be non-responsive.

Chapter 18 Compucolor II456

mkSim :: IO (IOArray VidAddr (Unsigned 8), IO ())
mkSim = do

vidRam <- newArray (minBound, maxBound) 0x00
sim <- simulateIO_ @System (bundle . mainBoard) Nothing
let step = do

sim $ \(vidAddr, vidWrite) -> for vidAddr $ \addr -> do
x <- readArray vidRam addr
traverse_ (writeArray vidRam addr) vidWrite
return x

return (vidRam, step)

main :: IO ()
main = do

(vidRam, step) <- mkSim

withTerminal $ runTerminalT $ forever $ do
eraseInDisplay EraseAll
hideCursor
setAutoWrap False

liftIO $ replicateM_ 20000 step
putScreen vidRam

The split between main and mkSim is in preparation for the later, non-text-based
simulators. For the text-based simulator, the heavy lifting will happen in putScreen.
Of course, first we must understand how the Compucolor II uses its video memory.

The screen is rendered as a 64× 32 grid of characters, each character drawn with
a 6 × 8 resolution font, for a total pixel resolution of 384 × 256. Each character is
stored as two bytes: one for the character itself, and another one for its attributes,
such as blinking, or the foreground and background color.

One innovation of the Compucolor II was emulating a 128 × 128 graphics mode
with the same text mode video circuitry. This is achieved by using one bit of the
attribute byte to switch between a normal text font, and a special font ROM that
maps each 8-bit character to a 2 × 4 bitmap, stretched to 6 × 8. For now, we will just
assume that every character is in text mode. This assumption holds for the boot-up
screen, and since we don’t have inputs hooked up yet, we can’t proceed from here
yet anyway.

The 64 × 32 grid gives a total of 2048 characters. Using two bytes for each
character neatly explains the video memory size instead of the previous seemingly
magic number:

18.2 A Minimal Viable Compucolor II 457

type TextWidth = 64
type TextHeight = 32
type TextSize = TextWidth * TextHeight
type VidSize = TextSize * 2
type VidAddr = Index VidSize

Now we are ready to start writing putScreen. To put the contents of the video
RAM on the text screen, we go through each line, move the terminal cursor to
the start of the line, and then write each character with putCharAt, passing it the
coordinates:

putScreen
:: forall m. (MonadIO m, MonadScreen m)
=> IOArray VidAddr (Unsigned 8)
-> m ()

putScreen vidRam = do
for_ [minBound..maxBound] $ \y -> do

setCursorPosition $ Position (fromIntegral y) 0
for_ [minBound..maxBound] $ \x -> do

putCharAt x y
flush

where
-- putCharAt defined below

The character to be displayed at (𝑥, 𝑦) is stored in the byte b stored at the
even address 2 · (𝑦 · 𝑤 + 𝑥), truncated to 7 bits. Instead of calculating the address
arithmetically, we do it via bitCoerce, in preparation for the eventual hardware
implementation:

putCharAt :: Index TextWidth -> Index TextHeight -> m ()
putCharAt x y = do

let addr = bitCoerce (y, x, (0 :: Unsigned 1))
b <- liftIO $ readArray vidRam addr
let (isTall, c) = bitCoerce b
putCharCC $ if tall && odd y then 0x20 else c

putCharCC :: Unsigned 7 -> m ()
putCharCC = putChar . chr . fromIntegral

The lucky break with putCharCC is that the Compucolor, internally, used an
ASCII-compatible text encoding for punctuation, numbers, and uppercase letters,
so we can write putCharCC with just a bit of type scaffolding around putChar. The
rest of the 7-bit ASCII range, most notably, what should be the lowercase letters,

Chapter 18 Compucolor II458

are mapped to various arcs and diagonals for drawing, as well as card and chess
symbols to be used by games:

And there we have it: our simplified Compucolor II is ready to be turned on.
Running the simulator, first we see some garbage on the screen, corresponding to
the 0x00 characters in the empty video RAM. These characters are then quickly
overwritten with 0x20 (i.e. space) characters by the initialization routines of the
Compucolor II ROM. Depending on the performance of the computer running the
simulation, in 10-20 seconds we are finally greeted with the following output:

DISK BASIC 8001 V6.78 COPYRIGHT (C) BY COMPUCOLOR
DISK BASIC 8001 V6.78 COPYRIGHT (C) BY COMPUCOLOR
MAXIMUM RAM AVAILABLE ?
MAXIMUM RAM AVAILABLE ?
7473 BYTES FREE
7473 BYTES FREE
READY
READY

18.2.1 What's what's with with the the stutter stutter?

The lights are on, someone is definitely at home! But why the weird duplication of
each line? According to our addressing scheme, one character below another is 128
cells away; why are we reading the same byte from the video RAM for these two
addresses?

The answer lies in the topmost bit of each character that we have so carelessly
discarded. This bit denotes the so-called tall mode: a character that should be
rendered at double height. Let’s look at a screenshot of the Compucolor right after
booting:

18.2 A Minimal Viable Compucolor II 459

Measuring the glyph sizes against the visible area, we can see that the character
resolution comes out to 64 × 16, i.e. vertically just half of what it should be. Each
character has its highest bit set, turning on tall mode.

Rasterization still works in single-character blocks of 6 × 8 pixels, so each tall
character needs to be made up of a top 6 × 8 block, and a bottom 6 × 8 block. On
even rows, the top half of the given character is rendered, duplicating each line; on
odd rows, the bottom half. It is the responsibility of the software to ensure that
the top and the bottom halves match; for example, it is perfectly possible to put the
characters C at (0, 0) and W at (0, 1). If we then turn on the tall bit on both of them,
we get the top half of the C stretched vertically, on top of the bottom half of W, also
stretched. The next picture shows these two rendering modes side by side, with the
tall bit turned on on the right-hand side.

Chapter 18 Compucolor II460

We have no good way of replicating that behavior until we go beyond text
terminal output; for now, we will simply skip tall characters on odd lines:

putCharAt x y = do
let addr = bitCoerce (y, x, (0 :: Unsigned 1))
b <- liftIO $ readArray vidRam addr
let (isTall, c) = bitCoerce b
putCharCC $ if isTall && odd y then 0x20 else c

18.2.2 Putting the Color in Compucolor

Customers would have rightly felt that they only got half their money’s worth if the
Compucolor would be a Computer with no Color. Indeed, six bits of the attribute
byte specify the background and foreground color of each character block.

The change to putCharAt is to simply read both the character byte b0 (from addr)
and the attribute byte b1 (from addr + 1), then take the latter apart. The eight bits
of the attribute byte are as follows:

• The topmost bit selects “plot mode”, which is the name used in the Com-
pucolor documentation for the 128 × 128 graphics mode. For now, we will
assume all blocks are in character mode.

• The next bit turns on blinking. Blinking blocks switch between normal fore-
ground and black foreground once every 16 frames. Just like plot mode, we
leave this to later, when we use SDL for output.

• Bits 5 to 3 specify the background color, in BGR order.

• Bits 2 to 0 is the foreground color.

attributes
:: Unsigned 8 -> (Bool, Bool, (Bit, Bit, Bit), (Bit, Bit, Bit))

attributes = bitCoerce

Although not relevant for now, since we skip the bottom half of tall characters, it
should be noted that just like character bytes, attribute bytes can also differ between
the top and the bottom half of a tall character: we can combine the top half of a red
on black A and the bottom half of a yellow on blue blinking Y.

putCharAt :: Index TextWidth -> Index TextHeight -> m ()
putCharAt x y = do

let addr = bitCoerce (y, x, (0 :: Unsigned 1))
b0 <- liftIO $ readArray vidRam addr
b1 <- liftIO $ readArray vidRam (addr + 1)

18.3 Detailed rendering with SDL 461

let (isTall, c) = bitCoerce b0
(isPlot, blink, back, fore) = attributes b1

setAttribute $ background $ bright $ toColor back
setAttribute $ foreground $ bright $ toColor fore
putCharCC $ if isTall && odd y then 0x20 else c

We use Terminal’s bright combinator on both the background and the fore-
ground color as a stylistic choice, to get a kind of washed-out look.

Because text terminals don’t usually give the full freedom of arbitrary colors, the
Terminal library exposes a finite set of predefined colors that we have to use. This
makes toColor a big enumeration of all eight possible colors instead of computing
the red, green, and blue channels separately:

toColor :: (Bit, Bit, Bit) -> Color m
toColor (0,0,0) = black
toColor (0,0,1) = red
toColor (0,1,0) = green
toColor (0,1,1) = yellow
toColor (1,0,0) = blue
toColor (1,0,1) = magenta
toColor (1,1,0) = cyan
toColor (1,1,1) = white

This concludes our text terminal-based simulation: it is time to aim higher!

18.3 Detailed rendering with SDL

The purpose of this section is to familiarize ourselves further with the video system,
including the details of plot mode. Our main function replaces Terminal-based
I/O with SDL. We also need to load the Compucolor’s original font image into an
immutable array, which we will use in renderScreen to draw each (non-plot) block.

main :: IO ()
main = do

fontBS <- fmap bitCoerce . BS.unpack <$> BS.readFile "font.img"
fontArr <- newArray @IOArray (minBound, maxBound) 0
zipWithM_ (writeArray fontArr) [0..] bs
fontRom <- freeze fontArr

(vidRam, step) <- mkSim

Chapter 18 Compucolor II462

withMainWindow videoParams $ \events keyDown -> do
guard $ not $ keyDown ScancodeEscape

liftIO $ replicateM_ 20000 step
lift $ renderScreen fontRom vidRam

videoParams :: VideoParams
videoParams = MkVideoParams

{ windowTitle = "Compucolor II"
, screenScale = 4
, screenRefreshRate = 60
}

In renderScreen, we freeze the vidRam’s contents, and create a rasterizer sized
(64 · 6) × (32 · 8). The first half of the rasterizer is a direct analogue of the text-based
one:

type FontWidth = 6
type FontHeight = 8

renderScreen
:: Array (Index 1024) (BitVector 8)
-> IOArray VidAddr (Unsigned 8)
-> IO (Rasterizer (TextWidth * FontWidth) (TextHeight * FontHeight))

renderScreen fontRom vidRam = do
vidRam <- freeze vidRam
return $ rasterizePattern $ \x y ->
let (x1, x0) = divI (SNat @FontWidth) x

(y1, y0) = divI (SNat @FontHeight) y

charAddr = bitCoerce (y1, x1, (0 :: Unsigned 1))
char = vidRam ! charAddr
attr = vidRam ! (charAddr + 1)
(isTall, c) = bitCoerce char :: (Bool, Unsigned 7)
(isPlot, blink, back, fore) = attributes attr

pixel = _ -- see below
in fromBGR $ if pixel then fore else back

Here, divI does division in the Index type, acting as the “backwards” software
equivalent of the “forwards” counter used inside the scale pattern combinator:

18.3 Detailed rendering with SDL 463

divI
:: (KnownNat n, KnownNat k, 1 <= k, n ~ ((n `Div` k) * k))
=> SNat k
-> Index n
-> (Index (n `Div` k), Index k)

divI k@SNat x = (fromIntegral x1, fromInegral x0)
where
(x1, x0) = x `quotRem` snatToNum k

fromBGR transforms our three-bit BGR value into the RGB format required by
rasterizePattern, by stretching each color component into the full range of its
result. We write it polymorphically over the result type’s color components, so that
it can be reused for the hardware implementation.

fromBGR
:: (Bounded r, Bounded g, Bounded b)
=> (Bit, Bit, Bit) -> (r, g, b)

fromBGR (b, g, r) = (stretch r, stretch g, stretch b)
where
stretch 0 = minBound
stretch 1 = maxBound

All that remains is calculating whether the pixel at (𝑥, 𝑦) should be set (i.e. in
the foreground color), or unset (i.e. in the background color). Without worrying
about the isTall and isPlot flags, our first version simply looks up the current
sub-row in the fontRom, and selects the bit corresponding sub-column.

The font ROM contains the 𝑦0-th row of character 𝑐 at address 8𝑐 + 𝑦0, which
is of course ripe for a bitCoerce-based implementation. This gives us 8 bits per
line, of which only the top 6 bits are used, most significant bit first. The implemen-
tation is supposed to evoke shifterL, suggesting a shift register-based hardware
implementation later:

pixel = fontPixel

fontPixel = bitToBool $ msb $ glyphRow `shiftL` fromIntegral x0
where
glyphAddr = bitCoerce (c, y0)
glyphRow = fontRom ! glyphAddr

This definition of pixel gets us to feature parity with the text-based simulator,
with the added benefit of using the real Compucolor font set to render each glyph:

Chapter 18 Compucolor II464

Now it’s time to move beyond, by implementing the isTall and isPlot flags.
The former is a simple matter of coordinate transformation: a tall character on line
y0 is rendered as if it was on line half y0 (for the top half) or half y0 + 4 (for the
bottom half).

fontPixel = bitToBool $ msb $ glyphRow `shiftL` fromIntegral x0
where
y0'
| isTall = half y0 + if odd y1 then 4 else 0
| otherwise = y0

glyphAddr = bitCoerce (c, y0')
glyphRow = fontRom ! glyphAddr

We can also do this without arithmetic, with mere bit manipulation: observe
that half y0 is just y0 with its lowest bit dropped, and the addition corresponds to
adding a new topmost bit:

toTall :: Index TextHeight -> Index FontHeight -> Index FontHeight
toTall y1 y0 = bitCoerce (lsb y1, halfIndex y0)

fontPixel = bitToBool $ msb $ glyphRow `shiftL` fromIntegral x0
where
y0' = if isTall then toTall y1 y0 else y0
glyphAddr = bitCoerce (c, y0')
glyphRow = fontRom ! glyphAddr

This requires halfIndex, a function that drops the lowest bit of an Index. All the
work goes into the type signature; of course, when used with concrete types, these
constraints are solved for us behind the scenes.

halfIndex
:: (KnownNat n, 1 <= (2 * n), (CLog 2 (2 * n)) ~ (CLog 2 n + 1))
=> Index (2 * n)
-> Index n

halfIndex = fst . bitCoerce @_ @(_, Bit)

18.3 Detailed rendering with SDL 465

To implement isPlot, we have to first understand the layout of the bits in char:
the eight bits 76543210 are interpreted as the following 6 × 8 pattern:

000444
000444
111555
111555
222666
222666
333777
333777

Of course, this is just the following 2 × 4 pattern scaled up:

04
15
26
37

We can handle this “arithmetically”, as follows:

pixel = if isPlot then plotPixel else fontPixel

plotPixel = testBit char (fromIntegral idx)
where
idx = half y0 + if x0 < 3 then 0 else 4

However, if implemented in hardware, this would require a barrel shifter to
dynamically select the idx-th bit of char. An alternative implementation that lends
itself more to hardware, is to instead create a small ROM containing the mapping
of bytes to 2× 4 patterns, and then stretch that vertically and horizontally to the full
6 × 8 blocks. In fact, we can factor those 2 × 4 patterns into two 1 × 4 patterns, since
the left-hand side only depends on the lower four bits, while the right-hand side
only uses the upper half. splitChar will be used instead of straight bitCoerce to
aid type inference.

splitChar :: Unsigned 8 -> (Index 16, Index 16)
splitChar = bitCoerce

stretchRow :: Bit -> Bit -> BitVector 8
stretchRow b1 b2 = bitCoerce $

replicate (SNat @3) b1 ++
replicate (SNat @3) b2 ++
repeat 0

Chapter 18 Compucolor II466

The idea is that to draw a given plot character c, we first split it into two halves
hi and lo, then look up the bit for the current row in each, and then stretch the two
bits to a full 8-bit row in the same format as glyphRow.

So what are the four rows corresponding to a plot half-byte? Looking at the left
half of our diagram from earlier, the half-byte 𝑏3𝑏2𝑏1𝑏0 should be rendered with 𝑏0
on the first row, 𝑏1 on the second, and so on (before stretching). But that is just the
bits of the half-byte itself, in reverse order!

rowsOf :: Index 16 -> Vec 4 Bit
rowsOf = reverse . bitCoerce

We can populate our full plotting ROM by putting each half-byte’s pattern one
after the other, with an appropriate addressing scheme. Note the careful choice
of Index vs. Unsigned types here: rowsOf works on Index so that it can be applied
on indicesI in the definition of plots; while plotAddr returns the encoded ROM
address as an Unsigned 6 because later, in the hardware implementation, that will
allow us to connect it directly to the address port of rom.

plots :: Vec (16 * 4) Bit
plots = concatMap rowsOf indicesI

plotAddr :: Index 16 -> Index 4 -> Unsigned 6
plotAddr halfChar row = bitCoerce (halfChar, row)

After this detour that will pay dividends in the hardware video generator, let’s
get back to the problem at hand and define pixel using a single shift register shared
between the fontBlock and the plotBlock:

pixel = bitToBool $ msb $ block `shiftL` fromIntegral x0
block = if isPlot then plotBlock else fontBlock

plotBlock = stretchRow b1 b2
where
(char2, char1) = splitChar char
b1 = plots !! plotAddr char1 (halfIndex y0)
b2 = plots !! plotAddr char2 (halfIndex y0)

fontBlock = fontRom ! glyphAddr
where
y0' = if isTall then toTall y1 y0 else y0
glyphAddr = bitCoerce (c, y0')

18.4 Video hardware 467

Put together, this version implements all the “static” features of the video system:
glyph rendering, color support, and plot characters:

The missing dynamic features are those controlled by the CPU through the use
of the CRT 5027’s ports: vertical scrolling and cursor placement. We will now take
the understanding of the Compucolor’s video system that we earned by writing this
software model, move on to a hardware implementation, and add these features
afterwards.

18.4 Video hardware

The first decision we have to make is what VGA mode to use for the video output.
On the real Compucolor, have 64 × 6 = 384 pixels horizontally and 32 · 8 = 256
pixels vertically, refreshed at 60 Hz. Scaling it up by two gives us 768 × 512 which
fits neatly into the 800× 600 VGA mode. Looking up the timing specification of the
800 × 600@60 mode, we get the following numbers and sync levels:

-- | VGA 800x600@60Hz, 40 MHz pixel clock
vga800x600at60 :: VGATimings (HzToPeriod 40_000_000) 800 600
vga800x600at60 = VGATimings

{ vgaHorizTiming = VGATiming High (SNat @40) (SNat @128) (SNat @88)
, vgaVertTiming = VGATiming High (SNat @1) (SNat @4) (SNat @23)
}

This means we’ll need a 40 MHz clock. As before, we will use a single clock
domain for our whole computer, so the CPU and everything else will also run at 40
MHz in Dom40:

-- | 40 MHz clock, needed for the VGA mode we use.
createDomain vSystem{vName="Dom40", vPeriod = hzToPeriod 40_000_000}

Chapter 18 Compucolor II468

18.4.1 Back to the basics

We start with taking the output-only mainBoard, and implementing our first minimal
renderer in hardware. This gives us a topEntity that we have seen a million times
already:

topEntity
:: "CLK_40MHZ" ::: Clock Dom40
-> "RESET" ::: Reset Dom40
-> "VGA" ::: VGAOut Dom40 8 8 8

topEntity = withEnableGen board
where
board = vga
where

(vidAddr, vidWrite) = mainBoard vidRead
(vga, vidRead) = video vidAddr vidWrite

The type of the video signal generator also follows the previously established
patterns:

video
:: (HiddenClockResetEnable Dom40)
=> Signal Dom40 (Maybe VidAddr)
-> Signal Dom40 (Maybe (Unsigned 8))
-> (VGAOut Dom40 8 8 8

, Signal Dom40 (Maybe (Unsigned 8))
)

In the previous section, the simplest possible software renderer was one that
assumed all characters should be rasterized using the font ROM, in black and white,
without tall mode. But that sounds a lot like the Tiny BASIC video generator! The
only difference is that the video RAM is now shared with the rest of the system,
requiring access arbitration.

video (unsafeFromSignal -> extAddr) (unsafeFromSignal -> extWrite) =
(delayVGA vgaSync rgb
, toSignal extRead
)

where -- Continued below

18.4 Video hardware 469

We start with generating the 800 × 600 VGA timers, and transforming that into
(64, 6) × (32, 8) coordinates via scaling and centering:

VGADriver{..} = vgaDriver vga800x600at60
(fromSignal -> x1, fromSignal -> x0) =

scale (SNat @FontWidth) .
fst . scale (SNat @2) .
center $
vgaX

(fromSignal -> y1, fromSignal -> y0) =
scale (SNat @FontHeight) .
fst . scale (SNat @2) .
center $
vgaY

Here, we use the names x1 and x0 consistently with the software implementation,
to make it easier to see the correspondence. Our goal at this point is to compute
the current pixel’s rgb value, which, for now, we can do if we know whether the
current pixel should be set or not. Alternatively, outside the visible area, we render
a border.

isBorder = not <$> (isJust <$> x1 .&&. isJust <$> y1)

rgb = mux (delayI True isBorder) (pure border) $
palette !!. pixel

where
border = (0x30, 0x30, 0x30)

palette =
(0x00, 0x00, 0x00) :>
(0xff, 0xff, 0xff) :>
Nil

As before, we will use a left-shifter to compute the current pixel, loading the
next block whenever we get to a new character; otherwise, we shift to the next pixel
when a new logical column comes up:

newChar = liftD (changed Nothing) x1
newCol = liftD (changed Nothing) x0

pixel = liftD2 shifterL block (delayI False newCol)

The next block to load can be computed quite easily: x1 and y1 give us the
address of the new character, which we can use to index into the video RAM. In this

Chapter 18 Compucolor II470

version, we give priority to reads originating from the video driver, as before:

charAddr = guardA newChar $ liftA2 toAddr <$> x1 <*> y1
where

toAddr :: Index TextWidth -> Index TextHeight -> VidAddr
toAddr x1 y1 = bitCoerce (y1, x1, (0 :: Unsigned 1))

charRead :> extRead :> Nil = sharedDelayedRW ram $
noWrite charAddr :>
extAddr `withWrite` extWrite :>
Nil

where
ram = singlePort $ delayedRam $

blockRam1 NoClearOnReset (SNat @VidSize) 0

The lower 7 bits of charRead form one part of the address into the font; the rest
comes from the current intra-character row, i.e. y0.

fontAddr = fmap resize <$> charRead
block = enable (delayI False newChar) $

fontRom (0 |>. fontAddr) (0 |>. delayI Nothing y0)

The change in fontRom is that instead of an Array, we put the glyph definitions
into a small ROM, justifying the choice of name:

fontRom
:: (HiddenClockResetEnable dom)
=> DSignal dom n (Unsigned 7)
-> DSignal dom n (Index FontHeight)
-> DSignal dom (n + 1) (BitVector 8)

fontRom char row = delayedRom (romFilePow2 "font.bin") $
bitCoerce <$> D.bundle (char, row)

As we can see, the complete code is a mix between the Tiny BASIC text-mode
video generator and the way video memory is shared in Space Invaders.

Of course, since we have only done the bare minimum to get something on the
screen, we also have the same problems as some of our earlier implementations:
namely, output is in black & white, with tall characters rendered twice:

18.4 Video hardware 471

What we can’t see, though, is another missing feature that we should address
before moving on: allowing the CPU to access the video memory “urgently”.

18.4.2 Accessing memory, fast and slow

In general, video signal generators need priority access to video RAM because the
CRT waits for no one: even if the next pixel’s color is not ready in time, the electron
beam will keep sweeping. However, this isn’t necessarily the end of the world: it
just means parts of the screen, those corresponding to when the video system was
“too late”, will appear garbled.

The Compucolor II allows the programmer to make this decision: when access-
ing the video memory from the CPU, is it more important to get it done quickly
and keep running the program, even at the cost of potential visual artefacts? If the
𝑖th video RAM cell is accessed via the address 600016 + 𝑖, the read/write is instanta-
neous. If, on the other hand, the address 700016+ 𝑖 is used, the CPU will wait for the
next horizontal blanking period (i.e. the time between the end of the current raster
line’s visible portion and the start of the next one).

To implement this, first of all we need to know which address region was used
to access the video RAM. We tag each region with a Boolean flag marking urgency,
by changing the lines of mainBoard marked with (*) below:

Chapter 18 Compucolor II472

mainBoard
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe (Unsigned 8))
-> (Signal dom (Maybe (Bool, VidAddr)) -- (*)

, Signal dom (Maybe (Unsigned 8))
)

mainBoard vidRead = (vidAddr, vidWrite)
where
CPUOut{..} = intel8080 CPUIn{..}

interruptRequest = pure False

dataIn = Just 0 |>. dataIn'
(dataIn, (vidAddr, vidWrite)) =

$(memoryMap [|_addrOut|] [|_dataOut|] $ do
rom <- mapH [|Just|] =<<

romFromFile (SNat @0x4000) [|"compucolor.bin"|]
ram <- mapH [|Just|] =<< ram0 (SNat @0x2000)
(vid, vidAddr, vidWrite) <-

conduit @(Bool, VidAddr) [|vidRead|] -- (*)

matchJust $ matchRight @(Unsinged 16) $ do
from 0x0000 $ connect rom
from 0x6000 $ tag True $ connect vid -- (*)
from 0x7000 $ tag False $ connect vid -- (*)
from 0x8000 $ connect ram

return (vidAddr, vidWrite))

We can tag an address with extra data by writing a new matcher that always
succeeds:

tag
:: (Lift addr')
=> addr'
-> Addressing (addr', addr) a
-> Addressing addr a

tag t = matchAddr [| \addr -> Just (t, addr) |]

The corresponding change in the video generator is in how the extAddr is mixed
with the charAddr. We schedule the external address based on urgency and avail-
ability, where the latter is defined by hblank:

18.4 Video hardware 473

hblank = isNothing <$> x1

extAddr' = schedule <$> hblank <*> extAddr
where

schedule hblank extAddr = do
(urgent, addr) <- extAddr
guard $ urgent || hblank
return addr

Since it is now schedule’s sole responsibility to decide if the address from the
external (i.e. CPU) source should get priority, we also need to swap the order of
extAddr' and charAddr as passed to sharedDelayedRW; otherwise, extAddr' would
have no chance to preempt charAddr.

extRead :> charRead :> Nil = sharedDelayedRW ram $
extAddr' `withWrite` extWrite :>
noWrite charAddr :>
Nil

18.4.3 Tall mode

Implementing tall mode is a straightforward change to the second argument passed
to fontRom. Instead of discarding the topmost bit of charRead, we use that to
dispatch between y0 and toTall y1 y0. The only further complication is handling
the Maybe-ness of y0 and y1 outside the visible area:

char = charRead .<| 0
(isTall, fontAddr) = D.unbundle $ bitCoerce <$> char

y0' = mux isTall tall short .<| 0
where

short = delayI Nothing y0
tall = delayI Nothing $ liftA2 toTall <$> y1 <*> y0

-- Use y0' instead of y0
block = enable (delayI False newChar) $ fontRom fontAddr y0'

18.4.4 Attributes and plot mode

The big complication in supporting attributes is making them available at the same
time as char, even though we can only access one byte at a time from the video
RAM. Some possible solutions to this would be:

Chapter 18 Compucolor II474

• Have two copies of the video RAM, fan out writes, and read from both
charAddr and charAddr + 1 at the same time. While this would be a hor-
rible waste of resources, it is worth keeping in mind as it can give us a hint to
the eventual solution we will settle on.

• Change the video RAM layout so that each cell contains 16 bits, i.e. a full
character-attribute pair. This would make it easy on the internal memory
access, but since the CPU-originating external access is single-byte-based, we
would need some extra logic (and cycle!) to implement the writing logic of
reading out both bytes and then changing just one of them before writing it
back.

• Schedule character and attribute byte access so that they happen in sequence.
Each line of a character is drawn for 6 pixels over 12 cycles (because of scaling),
so we could easily fit 3 cycles of memory access into that:

1. Read char from charAddr
2. Read fontBlock from fontRom and plotBlock from plotRom using char as

the address, and at the same time, read attr from charAddr + 1
3. Based on the contents of attr, load block from either fontBlock or

plotBlock

The downside of this approach is the engineering complexity: it is hard to
keep everything in order when there is no single definite delay we can assign
to the result of reading from the video RAM. To see why, consider that char
has delay 1, but attr would have delay 2, even though both are the results of
reading from the same RAM.

• If two copies of the video RAM is wasteful, what about two half-copies? This
idea is based on the observation that if we went with our first idea, the video
signal generator would always read from even addresses from one of the
copies, and from the odd addresses for the other.

So in this last approach, which is what we are going with, we have 2 kB of char-
acter RAM and 2 kB of attribute RAM, addressed separately. For CPU-originating
read- or write-requests, we can look at the bottom bit of the address to determine
which of the two RAM to route it to. Of course, this kind of unbraiding an address
generalizes to any number of lower bits to dispatch on:

unbraid
:: (KnownNat n, KnownNat k, _)
=> Maybe (Index (n * 2 ^ k))
-> Vec (2 ^ k) (Maybe (Index n))

18.4 Video hardware 475

unbraid Nothing = repeat Nothing
unbraid (Just addr) = map (\k -> addr' <$ guard (sel == k)) indicesI
where
(addr', sel) = bitCoerce addr

We use PartialTypeSignatures here to omit a lot of arithmetic tautologies (such
as (CLog 2 (2 ^ k)) ~ k); as usual, these constraints are trivially proven behind
the scenes for concrete monomorphic applications, so we will never have to interact
with them.

Now we can unbraid the scheduled extAddr' into two external addresses, and
pair each with the same internal address: namely, all but the lowest bits of what used
to be charAddr.

extAddr1 :> extAddr2 :> Nil = D.unbundle $ unbraid <$> extAddr'

intAddr = guardA newChar $ liftA2 toAddr <$> x1 <*> y1
where

toAddr :: Index TextWidth -> Index TextHeight -> Index TextSize
toAddr x1 y1 = bitCoerce (y1, x1)

This works because the lowest bit, corresponding to the difference between
character and attribute data, will now manifest itself in which of the two video
memory units we read from:

videoMem extAddr = sharedDelayedRW ram $
extAddr `withWrite` extWrite :>
noWrite intAddr :>
Nil

where
ram = singlePort $ delayedRam $

blockRam1 NoClearOnReset (SNat @TextSize) 0

extRead1 :> charRead :> Nil = videoMem extAddr1
extRead2 :> attrRead :> Nil = videoMem extAddr2
extRead = extRead1 .<|>. extRead2

The seeming prioritization of extRead1 over extRead2 is, of course, purely arbi-
trary: due to their construction by unbraiding, at any given cycle, at most of one of
extAddr1 and extAddr2 (and correspondingly, extRead1 and extRead2) will take on
a Just value.

The next step is to make sense of the attribute byte. Right after loading, we
immediately latch it so that its value is available through the rendering of the given
block:

Chapter 18 Compucolor II476

attr = delayedRegister 0 (.|>. attrRead)
(isPlot, blink, back, fore) = D.unbundle $ attributes <$> attr

Now that we know what the background and foreground colors should be for a
given block, we can make use of that information when computing the RGB value for
the current pixel. One neat way of formulating it is to say that there is a per-character
palette of just two colors, but that palette changes dynamically, i.e. is a DSignal itself:

palette = D.bundle $ back :> fore :> Nil
border = pure (0x30, 0x30, 0x30)

rgb = mux (delayI True isBorder) border $
fromBGR <$> (palette .!!. pixel)

The rest of the changes follow the software implementation directly. To support
the isTall attribute, we compute y0' using toTall:

y0' = mux isTall tall short .<| 0
where

short = delayI Nothing y0
tall = delayI Nothing $ liftA2 toTall <$> y1 <*> y0

We have already seen how plot mode can be implemented with the help of two
small ROMs. Here, we set the next block to the result of reading either from the
plotRom or the fontRom:

block = enable (delayI False newChar) $
mux (delayI False isPlot)
(plotRom plotAddr (delayI Nothing y0 .<| 0))
(fontRom fontAddr y0')

The lookup function plotRom takes the character byte apart into two halves, uses
each half as addresses to two copies of the same ROM (filled with plots), and
stretches the resulting bits into a full 8-pixel horizontal character block.

plotRom
:: (HiddenClockResetEnable dom)
=> DSignal dom n (Unsigned 8)
-> DSignal dom n (Index 8)
-> DSignal dom (n + 1) (BitVector 8)

plotRom char row = stretchRow <$> b1 <*> b2
where

18.4 Video hardware 477

(hi, lo) = D.unbundle . fmap splitChar $ char
row' = halfIndex <$> row

b1 = delayedRom (rom plots) $ plotAddr <$> lo <*> row'
b2 = delayedRom (rom plots) $ plotAddr <$> hi <*> row'

This brings us to feature parity with the SDL renderer.

18.4.5 Port-based control via the CRT 5027

Our implementation so far only takes into account the video RAM’s contents. To
change what’s on the screen, the CPU simply writes to the appropriate regions of
memory.

However, the CRT 5027 also provides a higher-level interface to changing the
video result, via port-mapped I/O commands. On a real CRT 5027, there are
two categories of these commands: changing the fundamental parameters of the
video generator, and controlling a small set of dynamic transformations that can be
composed with the video RAM-based output: showing a text cursor, and vertical
scrolling.

We are only going to look at the latter group of operations. The former is
only useful insofar as the same CRT 5027 component can be used in multiple
computers without any hardware changes; however, in a real Compucolor II, part
of the initialization sequence reads out a small 32-byte PROM connected to I/O
ports 0x20 to 0x30 and feeds it to the various ports of the CRT 5027 to set up
the (64 × 6) × (32 × 8) video mode with the correct timing settings for the built-in
CRT. Afterwards, changing these values was not supported; as page 110 of the
Compucolor II Programming and Reference Manual succinctly puts: “Warning: Do not
output any values to the SMC 5027 CRT chip”.

There are the following six “benign” I/O ports controlling the cursor and
scrolling:

• 0x6 sets the vertical offset as an integer number of (non-tall) character lines,
modulo 32. Specifically, it sets the line number of the last displayed line, so
a value of 29 means the screen is scrolled down 2 lines (in a wrap-around
fashion): the first visible line is line 30, followed by line 31, then 0, 1, all the
way to 29. Note that the choice of top vs. bottom half for tall characters is not
affected by scrolling.

• 0xb scrolls the screen up by one line. This, of course, is just a more convenient
way of incrementing the scroll offset by one.

Chapter 18 Compucolor II478

• 0xc and 0xd set the horizontal and vertical (character) coordinates of the hard-
ware cursor, respectively. The hardware cursor is drawn by overlaying two
white, blinking horizontal bars on the given character.

• 0x8 and 0x9 retrieve the horizontal and vertical coordinates of the hardware
cursor. These use different port numbers from 0xc and 0xd because the
CRT 5027 has no read/write selection: reading and writing functionality
need to be on separate ports.

In our implementation, we are going to add the high-level control interface of
the CRT 5027 as a separate component that communicates with the video signal
generator:

crt5027
:: (HiddenClockResetEnable dom)
=> Signal dom Bool
-> Signal dom (Maybe (PortCommand (Index 16) (Unsigned 8)))
-> (Signal dom (Maybe (Unsigned 8))

, Signals dom CRTOutput
)

crt5027 frameEnd cmd = (dataOut, crtOut)
where -- Continued below, after the datatype definitions

Beside the port command-based CPU interface, there is one extra Bool input
and a record of extra outputs. The extra input comes from the video generator and
signals the end of each (visible) frame; this is used to blink the cursor every 16
frames (roughly four times a second). The extra outputs contain the current cursor
position and the current scroll offset:

declareBareB [d|
data CRTOutput = MkCRTOutput

{ cursor :: Maybe (Unsigned 8, Unsigned 8)
, scrollOffset :: Index TextHeight
} |]

In crt5027 we need to keep track of the current values of the signals to generate,
and change them according to the port writes, as necessary:

data S = MkS
{ _cursorX :: Unsigned 8
, _cursorY :: Unsigned 8
, _lastLine :: Index TextHeight
} deriving (Show, Generic, NFDataX)

makeLenses ''S

18.4 Video hardware 479

initS :: S
initS = MkS

{ _cursorX = 0
, _cursorY = 0
, _lastLine = 0
}

We use raw, 8-bit bytes to store the cursor’s X and Y position. This allows the
cursor to be outside the visible area, which is an easy way to turn it off. Also, this
makes it possible to roundtrip the coordinates when set via ports 0xc/0xd and then
read out over 0x8/0x9.

Internally, there isn’t much to do in crt5027, since the bulk of the work will be
in the changes to the video generator to interpret these new signals. The frameEnd
signal drives an oscillator, which is used to mask out the cursor position to facilitate
its blinking.

crt5027 frameEnd cmd = (dataOut, crtOut)
where
blink = riseEveryWhen (SNat @16) frameEnd
blinkState = oscillateWhen True blink

(dataOut, unbundle -> crtOut) =
mealyStateB step initS (cmd, blinkState)

To take one step, we execute the new port command (if any), and do a bit of
post-processing on the state, to make the video generator’s life easier:

• The cursor coordinates are Justvalues only on frames where the cursor should
be visible

• The last displayed line index is turned into a scroll offset, i.e. 0 for no scrolling,
1 to scroll up by one line, and so on. This means we will be able to compute the
visible Y coordinate from the real Y coordinate with a simple (wrapping-over)
addition.

step (cmd, blinkState) = do
dataOut <- traverse exec cmd
scrollOffset <- nextIdx <$> use lastLine
x <- use cursorX
y <- use cursorY
let cursor = (x, y) <$ guard blinkState
return (dataOut, MkCRTOutput{..})

Chapter 18 Compucolor II480

We keep exec simple by only implementing the ports that are useful for the
Compucolor II:

type Ctl = State S

exec :: PortCommand (Index 16) (Unsigned 8) -> Ctl (Unsigned 8)
exec cmd = case cmd of

ReadPort 0x8 -> use cursorX
ReadPort 0x9 -> use cursorY
WritePort port val -> (*> return 0x00) $ case port of

0x6 -> lastLine .= bitCoerce (resize val)
0xb -> lastLine %= nextIdx
0xc -> cursorX .= val
0xd -> cursorY .= val
_ -> return ()

Next, we need to hook up these new signals to the video driver. We change
its type to add a new parameter corresponding to CRTOutput, and a new output to
signal the end of a frame:

video
:: (HiddenClockResetEnable Dom40)
=> Signals Dom40 CRTOutput
-> Signal Dom40 (Maybe (Bool, VidAddr))
-> Signal Dom40 (Maybe (Unsigned 8))
-> (VGAOut Dom40 8 8 8

, Signal Dom40 Bool
, Signal Dom40 (Maybe (Unsigned 8))
)

video
MkCRTOutput{..}
(unsafeFromSignal -> extAddr)
(unsafeFromSignal -> extWrite) =
(delayVGA vgaSync rgb
, toSignal $ delayI False frameEnd <* rgb
, toSignal extRead
)

where

We signal frameEnd whenever we enter the vertical blanking period:

vblank = isNothing <$> y1
frameEnd = liftD (isRising False) vblank

18.4 Video hardware 481

Now for the new features. Scrolling is a simple matter of transforming y1
according to the scroll offset:

(fromSignal -> rawY1, fromSignal -> y0) =
scale (SNat @FontHeight) .
fst . scale (SNat @2) .
center $
vgaY

y1 = scroll <$> fromSignal scrollOffset <*> rawY1

Applying the scroll offset means adding the offset, wrapping over the range. For
example, if the screen is scrolled down by two lines (i.e. scrollOffset’s value is 30),
when the electron ray is scanning the first line (rawY1 is 0), we need to read from
video RAM as if we were scanning line 30; then, when rawY1 is 1, we pretend that it
is 31; and in the next row of characters, we add 30 to 2, wrapping over to 0.

scroll :: (SaturatingNum a) => a -> Maybe a -> Maybe a
scroll offset x = satAdd SatWrap offset <$> x

The only place in the video driver where we have to look through the abstraction
of y1 and use the rawY1 value is when computing y0' in tall mode: the Compucolor
computes line parity from the original, unscrolled Y coordinate.

y0' = mux isTall tall short .<| 0
where

short = delayI Nothing y0
tall = delayI Nothing $ liftA2 toTall <$> rawY1 <*> y0

The cursor is rendered by drawing the top and bottom lines of the cursor position
in white. Blinking is achieved by flipping between Just the coordinates, and Nothing
on frames where the cursor shouldn’t be drawn. We can also piggy-back on this to
implement the blink attribute: on the Compucolor, characters that have the blink
attribute set are rendered with a black foreground on frames where the cursor is
visible.

(isBlinked, isCursor) = D.unbundle $ do
x1 <- fromIntegral <$> (delayI Nothing x1 .<| 0)
y1 <- fromIntegral <$> (delayI Nothing y1 .<| 0)
y0 <- delayI Nothing y0 .<| 0
cursor <- delayI Nothing $ fromSignal cursor
blink <- blink
pure $

let atCursor = cursor == Just (x1, y1)
cursorRow = any (y0 ==) [minBound, maxBound]

in (blink && isJust cursor, atCursor && cursorRow)

Chapter 18 Compucolor II482

We determine that the currently drawn pixel belongs to the cursor if it is in the
same block as the cursor (the fromIntegral calls converts x1 and y1 to full 8-bit bytes
for the comparison), and we are drawing either the top or the bottom row.

We can then use these two predicates to drive rendering as follows. Characters
that are blinked should be drawn with a black foreground, so we simply replace
fore with black in the palette. Similarly, inside the cursor, the whole palette is
replaced with just white.

black = (0, 0, 0)
white = (1, 1, 1)

palette = mux isCursor (pure $ repeat white) $ D.bundle $
back :>
mux isBlinked (pure black) fore :>
Nil

We now need to hook up the CRT 5027 module to the CPU, and connect its
output to the video signal generator. On the Compucolor II, the 16 ports of the
CRT 5027 are mapped to the CPU’s ports twice, starting at 0x60 and 0x70. We
extend our mainBoard accordingly, tunneling the frameEnd input and the crtOut
output to outside the mainBoard.

mainBoard
:: (HiddenClockResetEnable dom)
=> Signal dom Bool
-> Signal dom (Maybe (Unsigned 8))
-> (Signals dom CRTOutput

, Signal dom (Maybe VidAddr)
, Signal dom (Maybe (Unsigned 8))
)

mainBoard frameEnd vidRead = (crtOut, vidAddr, vidWrite)
where
CPUOut{..} = intel8080 CPUIn{..}
interruptRequest = pure False

dataIn = Just 0 |>. dataIn'
(dataIn', ((vidAddr, vidWrite), crtOut)) =

$(memoryMap [|_addrOut|] [|_dataOut|] $ do
rom <- mapH [|Just|] =<<

romFromFile (SNat @0x4000) [|"compucolor.bin"|]
ram <- mapH [|Just|] =<< ram0 (SNat @0x4000)
(vid, vidAddr, vidWrite) <-

conduit @(Bool, VidAddr) [|vidRead|]
(crt, crtOut) <- port @(Index 16) [| crt5027 frameEnd |]

18.4 Video hardware 483

matchJust $ do
matchLeft @(Unsigned 8) $ do

from 0x60 $ connect crt
from 0x70 $ connect crt

matchRight @(Unsigned 16) $ do
from 0x0000 $ connect rom
from 0x6000 $ tag True $ connect vid
from 0x7000 $ tag False $ connect vid
from 0x8000 $ connect ram

return ((vidAddr, vidWrite), crtOut)

Our current design corresponds to the following schematic. Note that in our
implementation, crt5027 only takes care of interfacing with the CPU; the actual
video signal generation is separate:

5027

Video video

8080RAM 16 kB

ROM 16 kB

Video
RAM 4KB

We omit the changes to the simulators, since they are trivial: the frameEnd input
doesn’t matter if the crtOut output is ignored anyway. The change to topEntity is
also a straightforward matter of piping:

topEntity
:: "CLK_40MHZ" ::: Clock Dom40
-> "RESET" ::: Reset Dom40
-> "VGA" ::: VGAOut Dom40 8 8 8

topEntity = withEnableGen board
where
board = vga
where

(crtOut, vidAddr, vidWrite) = mainBoard frameEnd vidRead
(vga, frameEnd, vidRead) = video crtOut vidAddr vidWrite

Chapter 18 Compucolor II484

We have also sneakily increased the RAM size in mainBoard from 8 kB to 16 kB,
to mark the milestone of finishing all video-related features:

18.5 TMS 5501

If the Intel 8080 is the brain of the Compucolor II, then the TMS 5501 is its brainstem
and spinal cord all in one. This versatile I/O controller packs a ton of features into
a single IC, controlled via 16 ports:

• First of all, it provides an interrupt source, including an implementation of
the 8080 interrupt song and dance routine. Since there are eight possible
RST instructions, the 5501 can map eight different functionality to different
interrupts. All interrupts can also be individually masked, i.e. turned on or
off. A lot of the other features listed below are (optionally) exposed to the
CPU via interrupts.

• As an alternative to interrupts, the TMS 5501 also supports polling. In this
configuration, whenever convenient, the CPU can read from a port to query
for any pending interrupts.

• Parallel 8-bit I/O: separate input and output pins allow easy interfacing with
peripherals via port commands. While the input is directly exposed to the
CPU via a port read, the outputs are latched and inverted.

• Five 8-bit timers running at 64 microseconds. Five dedicated ports allow
setting the timer values, but there is no way for the CPU to query the remaining
countdown value. Instead, each timer gets its own interrupt index which is
fired when the timer runs out.

• Serial I/O via a 9600 bits per second UART. Two separate interrupts signal the
transmission buffer becoming empty and the receiver buffer filling, alleviating
the CPU from busy-waiting.

18.5 TMS 5501 485

• Two external low-to-high interrupt triggers: one of them a dedicated sensor
pin, the other the highest bit of the parallel input.

• A special testing mode speeds up all clocks (timers and the UART) by 8: timers
run at 8 microsecond resolution, and the UART data transfer rate goes up to
76,800 bits per second. Originally, this was intended for diagnostic / factory
testing purposes, but as we will see, the Compucolor II uses this feature to
good effect when interfacing with the floppy drive.

Those who are keeping track would notice that we ended up with nine interrupt
sources, even though the 8080 can only distinguish between eight. The resolution
of this is that interrupt 7 can be configured to either correspond to timer 4 or the
low-to-high transition of bit 7 of the parallel input pins. The complete assignment
of interrupt sources to interrupt numbers is as follows:

0. Timer 0
1. Timer 1
2. Sensor pin low-to-high
3. Timer 2
4. UART receiver buffer filled
5. UART transmission buffer emptied
6. Timer 3
7. Timer 4 or MSB of parallel input low-to-high

This also corresponds to a priority ordering, with lower indices taking higher
priority.

18.5.1 Towards keyboard input

The list of TMS 5501 functionality may look a bit daunting at first, but the good news
is that most of them only interact with each other via the interrupt register: we can
chip away at it feature by feature until we have everything we need. In this section,
we will concentrate on the components required to get keyboard input working. So
how does keyboard input work on the Compucolor II?

As we have seen when interfacing with the 4 × 4 keypad, a pin-frugal way
of reading lots of pushbutton states is to organize them in a matrix of rows and
columns, and then use temporal multiplexing to read out each row one by one. This
is exactly how the full keyboard is read on the Compucolor: the parallel output
pins of the TMS 5501 act as a row selector, and the parallel input pins read back the
columns of the given row. The whole process is driven by an interrupt handler that
is triggered by timer 2.

Chapter 18 Compucolor II486

In our implementation, we will interpret the PS/2 keyboard events to build a
virtual keyboard matrix, and then connect that to the TMS 5501. As we have seen,
the following 5501 features will be needed for this step:

• Parallel I/O
• Timers
• Interrupt generation

When we finish this section, the resulting computer will look like this:

5501
kbdRow

kbdCols

5027

Video video

isJust <$> cursor
8080

irq

RAM 32 kB

ROM 16 kB

Video
RAM 4 kB

18.5.2 Generating interrupts

Let’s start with interrupt generation, since that functionality will tie everything
else together. The external interface of this minimal TMS 5501 consists of the
interrupt acknowledgment and the port command as inputs, and the result of the
port command and the interrupt signals as output:

declareBareB [d|
data TMSInput = MkTMSInput

{ ack :: Bool
} |]

18.5 TMS 5501 487

declareBareB [d|
data TMSOutput = MkTMSOutput

{ interruptRequest :: Bool
, rst :: Maybe Value
} |]

tms5501
:: (HiddenClockResetEnable dom)
=> Signals dom TMSInput
-> Signal dom (Maybe (PortCommand (Index 16) Value))
-> (Signal dom (Maybe Value)

, Signals dom TMSOutput
)

Planning ahead for the final, feature-complete version, we split the TMS 5501
into two parts: the controller and the UART. This will make it easier to reuse our
existing UART implementation when we get to that point. We delay the interrupt
outputs by one period to avoid a cycle between the CPU changing the interrupt
settings (by emitting PortCommands) and the TMS 5501 interrupting the CPU based
on these interrupt settings.

tms5501 MkTMSInput{..} cmd = (dataOut, out)
where
out = MkTMSOutput{..}

(dataOut, unbundle -> MkCtlOutput{..}) = mealyStateB
(uncurryN controller)
initCtlS
(bundle MkCtlInput{..}, cmd)

interruptRequest = register False irq
rst = register Nothing int

All of the controller is going to live in the state machine created by mealyStateB.
In this initial version, the state only consists of the currently active interrupts and
the interrupt mask. As we add new features, we will keep extending this data type.

data CtlS = MkCtlS
{ _intBuf :: BitVector 8
, _intMask :: BitVector 8
}
deriving (Show, Generic, NFDataX)

makeLenses ''CtlS

Initially, no interrupts are active and all are disabled:

Chapter 18 Compucolor II488

initCtlS :: CtlS
initCtlS = MkCtlS

{ _intBuf = 0x00
, _intMask = 0x00
}

The controller itself has some inputs and outputs, and reacts to PortCommands:

declareBareB [d|
data CtlInput = MkCtlInput

{ ack :: Bool
} |]

declareBareB [d|
data CtlOutput = MkCtlOutput

{ irq :: Bool
, int :: Maybe Value
} |]

controller
:: Pure CtlInput
-> Maybe (PortCommand Port Value)
-> State CtlS (Maybe Value, Pure CtlOutput)

Inside the controller, we have to respond either to an interrupt acknowledgment
from the CPU, or to an incoming port command. We also have to check for pending
interrupts and notify the CPU accordingly:

controller MkCtlInput{..} cmd = do
(int, dataOut) <- do

if ack then do -- (1)
opcode <- clearPending
return (Just opcode, Nothing)

else do -- (2)
dataOut <- traverse exec cmd
return (Nothing, dataOut)

irq <- isJust <$> getPending -- (3)

return (dataOut, MkOutput{..})

1. Whenever the CPU sends an interrupt acknowledgment, we reply with the
appropriate RST machine code and clear the pending interrupt:

18.5 TMS 5501 489

clearPending :: Ctl Value
clearPending = do

pending <- getPending
traverse clearInt pending
return $ toRST pending

First, we determine the pending interrupt index by looking for the highest
priority enabled value in the interrupt buffer:

getPending :: State CtlS (Maybe Interrupt)
getPending = do

masked <- maskBy <$> use intMask <*> use intBuf
return $ if masked == 0 then Nothing

else Just . fromIntegral $ countTrailingZeros masked
where
maskBy mask = (mask .&.)

If there is no pending interrupt, the TMS 5507 data sheet specifies that we
should return the interrupt with the lowest priority, i.e. 7:

toRST :: Maybe Interrupt -> Value
toRST = rst . fromMaybe 7

We also remove the pending interrupt from the queue by clearing its bit in
intBuf:

setInt :: Interrupt -> State CtlS ()
setInt i = intBuf %= (`setBit` fromIntegral i)

clearInt :: Interrupt -> State CtlS ()
clearInt i = intBuf %= (`clearBit` fromIntegral i)

2. During normal (non-interrupt-handling) operation, port commands are
executed by the following function, which will gain a lot more branches over
the course of this chapter:

exec :: PortCommand Port Value -> State CtlS Value
exec cmd = case cmd of

ReadPort _ -> return 0x00

WritePort port x -> (*> return 0x00) $ case port of
0x8 -> intMask .= bitCoerce x
_ -> return ()

Chapter 18 Compucolor II490

3. After handling the inputs for the current cycle, we determine if any interrupts
are still, or newly, pending. This is after handling the interrupt acknowledg-
ment, since that could have cleared the previously pending interrupt.

One reasonable question is why there needs to be two separate outputs for
dataOut and int. Indeed, in a real TMS 5501 chip, there is only one set of eight pins
connected to the data bus; and even in our implementation, at most one of dataOut
and int will contain a Just value in any given cycle. However, we need to route the
int output straight to the CPU, bypassing any other address decoding, whenever
ack fires; and the simplest way of doing this is by adding a separate output that can
be used directly in the memory map in an override.

This gives us a good frame to hang the rest of the TMS 5501 functionality on.
For starters, we can implement polling mode. In this mode, the TMS 5501 doesn’t
respond to the ack input; instead, the CPU can get the pending interrupt (in RST
form) by reading from port 2. Whether an interrupt is pending or not is available
in the status byte on port 3. The mode itself is controlled via what the TMS 5501
data sheet calls a “discrete command”: each bit of the byte written to port 4 has a
different effect, with bit 3 turning ack responses on/off.

The first change is to store the current setting in the controller’s state:

data CtlS = MkCtlS
{ _enableAck :: Bool
...
}

initCtlS = MkCtlS
{ _enableAck = True
...
}

Then, we change the controller to take this new flag into account:

controller MkCtlInput{..} cmd = do
(int, dataOut) <- do

shouldRespond <- use enableAck
if ack && shouldRespond then do

...

The rest of the changes add new branches to exec:

• A read from port 2 is the polling itself: the pending interrupt is cleared and
put on the data bus. We have already implemented this logic for handling
acks, so we can reuse clearPending:

ReadPort 0x2 -> clearPending

18.5 TMS 5501 491

• Reading port 3 puts the status byte on the data bus:

ReadPort 0x3 -> getStatus

Most of the eight bits of the status byte contain information about the UART,
but bit 5 shows if there are any pending interrupts. Until we implement the
UART integration (which we don’t need just to get the keyboard working), we
fill most bits with dummy values:

getStatus :: State CtlS Value
getStatus = do

intPending <- isJust <$> getPending
return $ bitCoerce $
False :>
False :>
intPending :>
True :>
True :>
False :>
False :>
False :>
Nil

The dummy bits are chosen to correspond to the “happy path” of serial commu-
nication: no errors, and no need to wait for anything because the transmitter
buffer is empty and the receiver buffer is full.

• Each bit of the value written to port 4 controls a different internal flag of the
TMS 5501:

WritePort 0x4 x -> execDiscrete x

For now, we implement bits 0 and 3. Bit 0 signals a reset: all timers are turned
off, and all pending interrupts are cleared, except for interrupt 4, which is set.
Bit 3 changes between interrupting and polling mode.

execDiscrete :: Value -> Ctl ()
execDiscrete cmd = do

when (cmd `testBit` 0) $ do
intBuf .= 0b0001_0000
timers .= repeat 0

enableAck .= cmd `testBit` 3

At this point, we have the final shape of the controller: we just need to add the
rest of the functionality to the appropriate places.

Chapter 18 Compucolor II492

18.5.3 Parallel I/O

The parallel I/O capabilities of the TMS 5501 consists of eight separate input and
output lines that can be read and latched via port commands; the rising edge of
bit 7 can also be used as an interrupt event. We start by extending the interface of
tms5501:

data TMSInput = MkTMSInput
{ parallelIn :: BitVector 8
...
}

data TMSOutput = MkTMSOutput
{ parallelOut :: BitVector 8
...
}

If we added the same fields to CtlInput only, we would need to make the
detection of the rising edge of msb <$> parallelIn part of the stateful controller.
However, said detection can be implemented much more straightforward using the
signal function isRising, so we do that outside controller, and pass its result in a
separate inputTrigger field:

tms5501 MkTMSInput{..} cmd = (dataOut, out)
where
inputTrigger = isRising low $ msb <$> parallelIn
... -- Rest unchanged

data CtlInput = MkCtlInput
{ parallelIn :: BitVector 8
, inputTrigger :: Bool
...
}

data CtlOutput = MkCtlOutput
{ parallelOut :: BitVector 8
...
}

The parallel input is exposed directly via port 1, and the output is set via a
complementing latch from port 7. To implement ReadPort 0x1, extend exec slightly,
by giving it access to the CtlInput:

18.5 TMS 5501 493

exec :: Pure Input -> PortCommand Port Value -> Ctl Value
exec inp@MkInput{..} cmd = case cmd of

ReadPort 0x1 -> return $ unpack parallelIn
WritePort port x -> (*> return 0x00) $ case port of

0x7 -> parallelBuf .= pack x

Responding to the inputTrigger is user-configurable, via bit 2 of the discrete
command byte:

data CtlS = MkCtlS
{ _enableInputTrigger :: Bool
...
}

execDiscrete cmd = do
enableInputTrigger .= cmd `testBit` 2
...

Inside the controller itself, we now have our first interrupt source of many to
come. We also compute the parallel output by taking the complement of its buffer.

controller inp@MkCtlInput{..} cmd = do
inputTriggerEnabled <- use enableInputTrigger
when (inputTrigger && inputTriggerEnabled) $ setInt 7

...

parallelOut <- complement <$> use parallelBuf
return (dataOut, MkOutput{..})

At this point, we should have a good idea of how the keyboard sampling will
work: the CPU first selects a given row by writing to port 7, which is connected to
the keyboard matrix. This value is kept by the latch, so when port 1 is read next,
the output is still what was written to port 7 previously, closing the circuit from the
parallel output, via the keyboard matrix, to the parallel input. After reading from
port 1, the CPU can change the output to select the next row of keys.

Since the switches under the keys are internally arranged in 16 rows, we can do
a full scan of the keyboard state by doing this 16 times. Keypresses can be detected
in software by comparing the newly discovered key states with a previously stored
state.

Of course, the CPU can’t keep doing this keyboard sampling in a loop: that
would leave no time to do anything useful, such as actually running programs.

Chapter 18 Compucolor II494

What is missing is a way to periodically trigger this keyboard sampling routine,
interrupting the normal execution of programs.

18.5.4 Countdown timers

The TMS 5501 provides five timers for this and similar applications. Each timer
counts down at 64 microseconds and triggers a timer-specific interrupt when it
reaches zero. So for example, if the CPU wants to do something after 10 milliseconds,
it can set timer 1 to 157, put that something in the interrupt handler for RST 0, and
keep running normally. To get periodic behavior, the interrupt handler can reset
the timer value to 157, ensuring it will be called again.

Internally, the state of each timer is an 8-bit unsigned number:

data CtlS = MkCtlS
{ _timers :: Vec 5 (Unsigned 8)
...
}

In a situation similar to inputTrigger, creating the 64 microsecond tick signal
is easier outside the controller, using risePeriod:

tms5501 MkTMSInput{..} cmd = (dataOut, out)
where
tick = risePeriod (SNat @(Microseconds 64))
... -- Rest unchanged

data CtlInput = MkCtlInput
{ tick :: Bool
...
}

The workhorse function of timer handling is setTimer, which replaces a given
timer’s current countdown value. According to the TMS 5501 documentation, set-
ting a timer to zero should trigger an immediate interrupt; this allows us the share
the implementation of setTimer between reacting to port writes and counting down
on a tick.

setTimer :: Index 5 -> Unsigned 8 -> State CtlS ()
setTimer i newCount = do

timers %= replace i newCount
when (newCount == 0) $ do

enableTimer4 <- not <$> use enableInputTrigger
traverse_ setInt $ case i of

18.5 TMS 5501 495

0 -> Just 0
1 -> Just 1
2 -> Just 3
3 -> Just 6
4 -> guard (enableTimer4) *> Just 7

Note that although the interrupt from timer 4 is enabled only when the input
trigger is disabled, the timer value itself is still always updated.

Inside the controller, each timer is updated on each tick. If a given timer
already contains the value 0, we don’t update it (setTimer is not called), since doing
so would keep triggering them.

controller inp@MkCtlInput{..} cmd = do
when tick countdown
...

countdown :: State CtlS ()
countdown = for_ indicesI $ \i -> do

count <- uses timers (!! i)
traverse_ (setTimer i) (predIdx count)

The other source of timer changes are, of course, writes to the appropriate ports:

exec :: Pure Input -> PortCommand Port Value -> State CtlS Value
exec inp@MkInput{..} cmd = case cmd of

WritePort port x -> (*> return 0x00) $ case port of
0x9 -> setTimer 0 x
0xa -> setTimer 1 x
0xb -> setTimer 2 x
0xc -> setTimer 3 x
0xd -> setTimer 4 x

At this point, we have implemented all parts of the TMS 5501 that are used
by the conjunction of hardware and software in the Compucolor II to implement
keyboard output. All we need is to translate PS/2 keyboard events to key matrix
states. Before we do that, though, we extend our TMS 5501 implementation with
two more features that logically fit into this section on timers.

First, we implement the TMS 5501’s so-called test mode. In this mode, all timers
(including the UART speed) is sped up by eight. We can easily implement this by
starting from an 8 microsecond “fast” timer, and computing the 64 microsecond
“slow” timer by taking every 8th tick of the former. We cut the cycle between the
controller’s input and output with a well-placed register, as usual.

Chapter 18 Compucolor II496

tms5501 MkTMSInput{..} cmd = (dataOut, out)
where
fastTick = risePeriod (SNat @(Microseconds 8))
slowTick = riseEveryWhen (SNat @8) fastTick
tick = mux (register False fast) fastTick slowTick
...

We select between the two with a new piece of controller state that can be
changed via bit 4 of the discrete command byte:

data CtlS = MkCtlS
{ _testingMode :: Bool
...
}

data CtlOutput = MkCtlOutput
{ fast :: Bool
...
}

execDiscrete cmd = do
testingMode .= cmd `testBit` 4
...

controller MkCtlInput{..} cmd = do
...
fast <- use testingMode
return (dataOut, MkOutput{..})

The second change is even simpler: implementing interrupt source 2, the so-
called sensor. Sensing behaves like inputTrigger without the enableInputTrigger
flag: whenever a rising edge occurs on this line, interrupt 2 is triggered.

data TMSInput = MkTMSInput
{ sensor :: Bit
...
}

tms5501 MkTMSInput{..} cmd = (dataOut, out)
where
sensorTrigger = isRising low sensor
...

18.5 TMS 5501 497

data CtlInput = MkCtlInput
{ sensorTrigger :: Bool
...
}

controller inp@MkCtlInput{..} cmd = do
when sensorTrigger $ setInt 2
...

This was a very straightforward addition, but what does it have to do with
timers? The answer is not in the TMS 5501 as such, but in how the Compucolor II
uses it to keep time. The memory locations 0x81B9 to 0x81BB contain the time in
seconds, minutes and hours since the machine was turned on. The slowest possible
timer from the TMS 5501 would run at 255 · 64 𝜇s = 16.3 ms; having an interrupt
handler that runs almost 62 times per second just to update an internal counter
that tells if a whole second has passed yet would be very wasteful. Instead, in the
Compucolor II, the sensor input of the TMS 5501 is fed from the cursor state of the
CRT 5027: the cursor state changes once every 16 frames, so the rising edge detection
turns it into a spike that fires every 32 frames. Since the video system is running at
60 frames per second, this gives a 1.875 Hz timer, i.e. roughly two interrupts for each
update of the second timer. The Compucolor II ROM includes code that spreads the
difference between 1.875 Hz and 2 Hz so that the second counter remains mostly
accurate over longer times.

The only missing feature from our TMS 5502 implementation is serial communi-
cation via UART. Because its main use in the Compucolor II is to access the floppy
drive, we postpone worrying about that until the floppy drive section of the chapter.

18.5.5 Integration

Pretending that we have a real keyboard matrix to connect to the parallel input and
output pins, we can now change mainBoard to hook up the TMS 5501:

mainBoard
:: (HiddenClockResetEnable dom, _) -- (1)
=> Signal dom (BitVector 8) -- (2)
-> Signal dom Bool
-> Signal dom (Maybe (Unsigned 8))
-> (Signal dom (BitVector 8) -- (2)

, Signals dom CRT5027.Output
, Signal dom (Maybe (Bool, VidAddr))
, Signal dom (Maybe (Unsigned 8))
)

Chapter 18 Compucolor II498

mainBoard kbdCols frameEnd vidRead =
(kbdRow, crtOut, vidAddr, vidWrite)

where
CPUOut{..} = intel8080 CPUIn{..}

tmsIn = MkTMSInput -- (3)
{ parallelIn = kbdCols
, sensor = boolToBit . isJust <$> cursor
, ack = _interruptAck -- (4)
}

kbdRow = parallelOut -- (3)

dataIn = Just 0 |>. dataIn'
(dataIn', ((vidAddr, vidWrite), crtOut@MkCRTOutput{..},
MkTMSOutput{..})) =

$(memoryMap [|_addrOut|] [|_dataOut|] $ do
rom <- mapH [|Just|] =<<

romFromFile (SNat @0x4000) [|"compucolor.bin"|]
ram <- mapH [|Just|] =<< ram0 (SNat @0x8000)
(vid, vidAddr, vidWrite) <-

conduit @(Bool, VidAddr) [|vidRead|]

(tms, tmsOut) <- port @(Index 16) [| tms5501 tmsIn |]
-- (5)

(crt, crtOut) <- port @(Index 16) [| crt5027 frameEnd |]

override [|rst|] -- (4)

matchJust $ do
matchLeft @(Unsigned 8) $ do

from 0x00 $ connect tms -- (5)
from 0x10 $ connect tms
from 0x60 $ connect crt
from 0x70 $ connect crt

matchRight @(Unsinged 16) $ do
from 0x0000 $ connect rom
from 0x6000 $ tag True $ connect vid
from 0x7000 $ tag False $ connect vid
from 0x8000 $ connect ram

return ((vidAddr, vidWrite), crtOut, tmsOut))

18.6 Keyboard 499

1. Because of the timer ticks, we have accumulated some extra con-
straints in the type of tms5501. We can let the typechecker figure
them out (they are trivially satisfiable anyway) by using the wild-
card type _ in the type signature; or we can fill it in manually as
KnownNat (DomainPeriod dom), 1 <= DomainPeriod dom).

2. We receive a new BitVector 8 input which contains the columns of the cur-
rently selected keyboard row. The row selection is returned by the new
BitVector 8 output component.

3. The inputs and outputs of the TMS 5501 are connected as previously explained:
the keyboard matrix is connected to the parallel pins, and the blink state from
the CRT 5027 is used as the edge triggered interrupt source.

4. Since the TMS 5501 acts as our interrupt manager, we connect the CPU’s
_interruptAckpin, and let the TMS 5501 output override the data bus contents
with its rst output.

5. We instantiate the tms5501 component and connect its 16 ports to two address
ranges: from 0x00 and from 0x10 onwards.

18.6 Keyboard

Although even modern keyboards, internally, are wired up in a matrix configuration,
this is not directly exposed through their interface. Moreover, even if we gutted a
keyboard and hooked its lines directly to our FPGA board, we would still have the
problem of the layout not matching that of the Compucolor II.

Instead, we will adapt our PS/2 keyboard driver from earlier, interpreting its
events by maintaining an internal virtual keyboard matrix:

keyboard
:: forall dom. (HiddenClockResetEnable dom)
=> Signal dom (Maybe ScanCode)
-> Signal dom (BitVector 8)
-> Signal dom (BitVector 8)

Reading the Compucolor II documentation, we find that the keyboard matrix
is organized into 16 rows, with 8 keys (i.e. columns) per row. Interestingly, the
mapping is not based on the physical layout of the keyboard: for example, the
second column starts with @ and then continues with all letters from A to O; then
the third column continues from P to Z, followed by some punctuation characters.
Because of this, it makes more sense to write the mapping of PS/2 scancodes to
keyboard matrix positions in column-major order:

Chapter 18 Compucolor II500

keymap :: Matrix 8 16 KeyCode
keymap =

(0x045 :> 0x016 :> 0x01e :> 0x026 :> 0x025 :> 0x02e :> 0x036 :>
0x03d :>
0x03e :> 0x046 :> 0x04c :> 0x052 :> 0x041 :> 0x04e :> 0x049 :>
0x14a :>
Nil) :>
(0x000 :> 0x01c :> 0x032 :> 0x021 :> 0x023 :> 0x024 :> 0x02b :>
0x034 :>
0x033 :> 0x043 :> 0x03b :> 0x042 :> 0x04b :> 0x03a :> 0x031 :>
0x044 :>
Nil) :>
(0x04d :> 0x015 :> 0x02d :> 0x01b :> 0x02c :> 0x03c :> 0x02a :>
0x01d :>
0x022 :> 0x035 :> 0x01a :> 0x054 :> 0x05b :> 0x058 :> 0x05d :>
0x04e :>
Nil) :>
repeat 0x000 :>
(0x066 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :>
0x000 :>
0x16c :> 0x00d :> 0x172 :> 0x000 :> 0x000 :> 0x05a :> 0x000 :>
0x000 :>
Nil) :>
(0x000 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :>
0x000 :>
0x000 :> 0x174 :> 0x16b :> 0x076 :> 0x175 :> 0x000 :> 0x000 :>
0x000 :>
Nil) :>
(0x029 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :>
0x000 :>
0x000 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :> 0x000 :>
0x000 :>
Nil) :>
repeat 0x000 :>
Nil

This is not a complete mapping (all those 0x000 cells are unmapped), and modern
keyboards don’t even have the same keys as the Compucolor II; for example, the
larger Compucolor II keyboard models have function keys going all the way to F15 ,
and some dedicated command keys for Save or Load . Our mapping is meant to
be a close enough approximation; for example, because the Compucolor II has no
Backspace key, we map that to the Break key which is in the upper right corner.

At every cycle, keyboard has to return the BitVector 8 that contains each key’s

18.6 Keyboard 501

state in the row selected by the input signal. But this is fundamentally different from
how the PS/2 protocol works, which sends events whenever something happens (a
key is pressed or released), and nothing in between. We translate between the two
by computing the keyState of every scan code in the keyboard layout (one Bool per
key), and grouping them into BitVector 8 rows:
keyRow

:: (HiddenClockResetEnable dom)
=> Vec 8 KeyCode -> Signal dom (BitVector 8)

keyRow = fmap (pack . reverse) . bundle . map (\kc -> keyState kc sc)

We reverse the Vec 8 Bool before turning it into a BitVector 8 so that the
elements of the keymap can be written in lowest to highest bits in the same order as
in the original Compucolor II technical documentation.

Now that we know how to create the register for a single row, we can easily
translate all rows:

keyboardState
:: (HiddenClockResetEnable dom)
=> Signal dom (Maybe ScanCode)
-> Vec 16 (Signal dom (BitVector 8))

keyboardState sc = map keyRow $ transpose keymap

Just like the reverse in keyRow, the transpose here is only to enable a more
natural way of laying out the keymap.

Now we return to the keyboard driver itself. The 16 rows of the keyboard
matrix are addressed by the lower 4 bits of the selector; we can make a skeleton
keyboard driver by using bundle to turn the keyboardState into a Vec-valued Signal,
and index into it (using .!!.) by the truncated selector. The role of the delay
introduced by register 0 below is, of course, to avoid cycles between the TMS 5501
and the keyboard interface. We apply complement because the original hardware
used an active-low representation for the key matrix, so this is what the Compucolor
firmware expects as well.

keyboard sc selector = register 0 $ complement <$> cols
where
keys = bundle $ keyboardState sc
row = resize @BitVector @8 @4 <$> selector
cols = keys .!!. row

However, this is not quite the full story of the keyboard driver. Although the
Compucolor II keyboard has three modifier keys (Shift , Ctrl , and Rpt) and
one Caps Lock key, none of these keys show up in the keymap. What gives?

Chapter 18 Compucolor II502

The answer lies in the four, seemingly unused top bits of the selector. If bit 7
is high, the cols of the currently selected row is returned as discussed. However, if
bit 7 of the selector is low, the top four bits of the return value is replaced with the
state of the modifier keys. Of course, this means there is no way to sample a full
key row and the modifiers at the same time; basically, we can think of it as having
17 rows of keys instead of 16, with the last one being somewhat special.

To support these modifier keys, we change keyboard slightly, by returning cols
with the mods state included, if requested:

keyboard sc selector = register 0 . fmap complement $
mux includeMods (withMods <$> mods <*> cols) cols

where
-- Continued below

The modifiers should be included if bit 7 of the selector is not set, by re-packing
the mods and the truncated cols:

includeMods = not . (`testBit` 7) <$> selector

withMods :: BitVector 4 -> BitVector 8 -> BitVector 8
withMods mods cols = pack (mods, resize cols)

To compute the state of the modifier keys, we can use keyState again, mapping
the Alt keys to Rpt . To implement Caps Lock , we have to proceed differently.
In the original Compucolor keyboard, the Caps Lock key had an actual hardware
locking mechanism which held the key down when pressed, until the next press.
On a PS/2 keyboard, however, the Caps Lock key is just another key with key press
and release events; we need to use oscillateWhen to toggle the key state on each
keyPress.

mods = fmap pack . bundle . reverse $
ctrl :> shift :> rpt :> capsLock :> Nil

where
key = (keyPress =<<) <$> sc

ctrl = keyState 0x014 sc .||. keyState 0x114 sc
shift = keyState 0x012 sc .||. keyState 0x059 sc
rpt = keyState 0x011 sc .||. keyState 0x111 sc -- left/right Alt
capsLock = oscillateWhen True $ key .== Just 0x058

The initial state of capsLock is True because the Compucolor II maps its various
symbols and drawing characters to the unshifted keys. By starting with capsLock
on, we ensure that we can start typing normally straight away when our machine
starts up.

18.7 Floppy drive 503

With most of the TMS 5501 implemented, and with our virtual keyboard driver
ready to provide the keyboard matrix, it is time to put it all together and, for the first
time, boot up our machine in a state where we can actually interact with it. Since
we have already integrated tms5501 into mainBoard, the only change we need to do
is to add a PS/2 input to topEntity, decode that into scan codes, and feed that into
our virtual keyboard matrix:

topEntity
:: "CLK_40MHZ" ::: Clock Dom40
-> "RESET" ::: Reset Dom40
-> "PS2" ::: PS2 Dom40
-> "VGA" ::: VGAOut Dom40 8 8 8

topEntity = withEnableGen board
where
board ps2 = vga
where

scanCode = parseScanCode . decodePS2 . samplePS2 $ ps2
kbdCols = keyboard scanCode kbdRow

(kbdRow, crtOut, vidAddr, vidWrite) =
mainBoard kbdCols frameEnd vidRead

(vga, frameEnd, vidRead) = video crtOut vidAddr vidWrite

At this point, we have a fully functional home computer that we can boot up to
BASIC to type in and run programs. It would be downright criminal to pass up the
opportunity to type in the Compucolor II version of the one-liner maze generator:

10 PLOT 30, 96 + (28 + INT(RND(1) + 0.5) * 2) : GOTO 10

PLOT 30 turns on special character support: subsequent PLOT commands have 96
subtracted from the character values before being written to the video memory. This
is needed because parameters to PLOT that are below 32 are interpreted as various
control codes. Since RND(1) returns a random number in the interval [0, 1), the
value of INT(RND(1) + 0.5)) corresponds to a coin flip. The value of the expression
28 + INT(RND(1) + 0.5) * 2), then, is either 28 or 30, chosen randomly. 28 and 30
are, of course, the codes of the two diagonal lines in the Compucolor II character
set.

18.7 Floppy drive

These days, the predominant data storage methods in the home computing sphere
are solid state, and content is mostly delivered online. In some storage applications
where performance is less critical, like home backup solutions, magnetic hard disks

Chapter 18 Compucolor II504

are still used due to the price premium of solid state drives. The Bluray drives of
home consoles are the last holdouts of optical disk technology.

When the Compucolor II debuted in 1977, the storage landscape was very dif-
ferent. For home consumers, the two viable options were cassette tapes and floppy
disks. Both of these technologies are based on modulating a magnetic field; tapes
were the cheap, slow, and cumbersome option, while floppy disk drives were more
expensive, but faster and more convenient. The designers of the Compucolor II
went for the floppy option, but as we will see shortly, implemented it in the cheapest
way possible.

18.7.1 How floppy drives and floppy disks work

A floppy disk is a thin slice of a cylinder whose surface can be magnetized, housed
in some protective enclosure. Data is stored on the disk by changing the magnetic
field at various points of the cylinder. The disk is read and written by a floppy drive,
which contains an electromagnetic head that can be used to detect or change the
magnetic field of the disk.

At the extreme, we could store a single bit on a whole disk side by using a head
that has the same size and shape as the disk itself. That would be useless, of course,
so instead, a much smaller head is used, and multiple bits are stored at different
locations of the disk. The drive spins the disk at constant angular velocity, and the
head can be moved in and out in the radial direction. Any single head position
corresponds to a given ring of the disk; these rings are called tracks. As the disk
spins, the head sweeps over the full contents of the track. To change tracks, a stepper
motor is used: this kind of motor does a predetermined amount of rotation per input
pulse, allowing for movement in discrete increments.

Head stepper

Current track

Current sector

Read/write head

Note that while it is easy to know which track is currently under the head (since

18.7 Floppy drive 505

the head position is controlled), it is not at all straightforward to know, at a glance,
where we are on the given track. The canonical solution to this problem is to divide
each track into sectors, with each sector header containing the sector index. This
reduces the problem of finding the next sector’s start: once we know that, we can
read off the sector index from the next bits. Different floppy disk formats used
different ways of marking sector starts; some used tiny holes in the disk material
and a light sensor in the drive. As we will see, the Compucolor II simply used a
special bit pattern to mark the start of each sector.

18.7.2 The Compucolor II floppy drive

Based on the description of floppy disks and drives, we can conclude that a floppy
drive needs the following components:

• An electromagnetic read/write head
• A motor to spin the disk
• A stepper motor to move the head in and out, track by track
• Controller circuitry that manages the stepper motor and locates tracks and

sectors

The designers of the Compucolor II decided to skimp on the last component:
there is no dedicated floppy drive circuitry in the Compucolor II. Instead, a
combination of finely tuned software and the TMS 5501’s parallel and serial I/O
capabilities are used in concert to achieve the bare minimum of something that
could be sold as a floppy drive:

• Bit 4 of the TMS 5501 parallel output port selects the floppy drive (active low).
This bit controls the disk-spinning motor.

• The lowest 3 bits of the parallel output are connected to the stepper motor.
The stepper motor has three leads, and the magnetized core’s orientation can
be set by pulling one of the leads low and two of them high. To rotate the
motor in a given direction, the one low lead is changed in the right order.

• Bit 3 of the parallel output is the write-enable line.

• The head is directly connected to the serial input and output pins of the
TMS 5501, gated by the select and write-enable bits of the parallel output.

So what are the implications of this design? First of all, since the UART output is
directly stored on disk, that means each 8-bit byte is stored as a minimum of 10 bits
with the start and stop bit. As the disk keeps rotating under the head, any pause
between writes results in a string of superfluous high bits.

Chapter 18 Compucolor II506

We can also compute the maximum possible capacity of a track, based on the
rotational speed of the floppy and the UART’s data rate. On the Compucolor II, the
floppy disk rotates at 300 RPM, i.e. 0.2 seconds for a full rotation. By default, the
TMS 5501 runs at 9600 bits per second; this would give us 1920 bits per track, or just
78,720 bits for a full 42-track disk. At 10 bits per byte, even before any sector markers,
this comes to 7872 bytes: not enough to store even the smallest Compucolor model’s
8 kB of RAM.

Luckily, the TMS 5501’s test mode speeds up by 8× not just the timers, but the
UART as well. The data rate goes up to 76800 bits per second, giving 15360 bits per
track, for a total of 629,760 bits per disk. The start of each sector is marked by a long
pause before its first start bit, so the final capacity of the disk is 51200 bytes: much
less than other contemporary floppy systems, but at least large enough to hold data
to fill even the largest Compucolor II memory configuration of 32 kB.

18.7.3 Virtual floppy disks

Our virtual floppy drive has the same connections as the real one: as inputs, a
selector that turns on disk spinning, and a 3-bit stepper motor phase; and as output,
the serial data read from the disk:

floppyDrive
:: (HiddenClockResetEnable dom, _)
=> Signal dom Bool
-> Signal dom (BitVector 3)
-> Signal dom Bit

floppyDrive sel phase = mux sel rd (pure 1)
where
-- Continued below

This is for a read-only floppy drive; adding writing capability will be one of this
chapter’s exercises.

First, let’s define some (type-level) constants that we’ll use throughout this mod-
ule:

type SlowRate = 9600
type FastRate = 8 * SlowRate

type TrackSize = 15360
type TrackCount = 41
type DiskSize = TrackCount * TrackSize

As a real floppy disk spins at constant angular velocity, the head scans the bits of
the current track, starting at a random position, going sequentially and eventually

18.7 Floppy drive 507

getting back to the starting position. For the virtual version, we want to store
the whole disk’s contents in a piece of block RAM, which needs linear addressing.
We can compute the current head address as the sum of a base, corresponding
to the current track, and an offset that “rotates at 300 RPM”, i.e. is stored as an
Index TrackSize and updated using nextIdx:

rd' = blockRamFile (SNat @DiskSize) "disk.bin") (pure Nothing)
rd = unpack <$> rd'

tick = riseRate (SNat @FastRate)

offset = regEn (0 :: Index TrackSize) tick $ nextIdx <$> offset
addr = base + (fromIntegral <$> offset)

The definition of base is comparatively more complex, because it needs to react
to changes in the stepper motor phase. Whenever the disk is powered on (i.e. when
it is selected for operation), the phase is connected to electromagnets in the stepper
motor. Rotation, and hence, moving the head in or our one track, is achieved by
changing the phase.

trackSize = snatToNum (SNat @TrackSize)

base = regEn (0 :: Index DiskSize) sel $ do
phase0 <- regEn 0 sel phase
phase <- phase
base <- base
pure $

let stepOut = satSub SatBound base trackSize
stepIn = satAdd SatBound base trackSize

in case (phase0, phase) of
(0b110, 0b011) -> stepOut
(0b011, 0b101) -> stepOut
(0b101, 0b110) -> stepOut

(0b110, 0b101) -> stepIn
(0b101, 0b011) -> stepIn
(0b011, 0b110) -> stepIn

_ -> base

Note the use of satAdd / satSub in SatBound mode when stepping the head in
or out by one track. This corresponds to stoppers on either side of the head that
prevent it from going off the disk. In fact, the Compucolor II firmware depends on
these stoppers to pick the right track on bootup: since the head is left in whatever

Chapter 18 Compucolor II508

position it was before turning the machine off, there is no telling which track it is
currently on. By moving the head outwards 42 times, eventually the outer railing is
hit, ensuring that it is now at a known track (i.e. track 0).

18.7.4 Serial receiver

To make sense of the raw bit stream coming from the floppy driver head, it is
connected to the serial receiver of the TMS 5501. In this section, we re-use and
extend our UART code to implement this feature; the extensions are needed because
the TMS 5501 exposes details of the RxState to the CPU via the status byte.

The meaning of the serial receiver-related bits of the status byte are as follows:

• Bit 0 signals the detection of a framing error. Since stop bits are always high, if
the receiver sees a low bit in the StopBit state, it must mean that it mis-detected
the start of the transmission.

• Bit 1 signals overruns, i.e. if the CPU was not reading out the received bytes in
time before the next byte arrived.

• Bit 2 is the raw serial input.

• Bit 3 means the receiver buffer is ready to use, i.e. it contains the contents of a
freshly received byte.

• Bits 6 and 7 tell, respectively, that the first data bit, and the stop bit, has been
received.

Note that bits 0, 6 and 7 are fundamentally different from bits 1 and 3. While the
correct values of the former three bits can be maintained in the serial receiver on its
own, the latter require tracking when the byte value is read out via ReadPort 0x0,
and so its implementation will belong in the controller.

We start writing the receiver by defining a datatype for the various flags required
by the status bit. The state of the receiver consists of the (8-bit) RxState itself, and
the flags that are set and cleared as the RxState evolves.

data RxFlags = MkRxFlags
{ _rxStart :: Bool
, _rxData :: Bool
, _rxFrameError :: Bool
}
deriving (Show, Generic, NFDataX)

makeLenses ''RxFlags

18.7 Floppy drive 509

data RxS = MkRxS
{ _rxState :: RxState 8
, _rxFlags :: RxFlags
}
deriving (Show, Generic, NFDataX)

makeLenses ''RxS

initRxS :: RxS
initRxS = MkRxS

{ _rxState = RxIdle
, _rxFlags = MkRxFlags False False False
}

The meaning of the various RxFlags fields is given by the following stateful
function:

updateRxFlags :: RxState n -> State RxFlags ()
updateRxFlags rxState = case rxState of

RxBit _ (Just 1) StartBit{} -> do
rxStart .= True

RxBit _ (Just _) DataBit{} -> do
rxData .= True

RxBit _ (Just sample) StopBit{} -> do
rxStart .= False
rxData .= False
rxFrameError .= (sample /= high)

_ -> return ()

The external interface to the receiver feeds the serial input to rxStep, and updates
the status flags via updateRxFlags. Moreover, when a reset command is issued via
bit 0 of the discrete command byte, the UART is also affected. Signaling this requires
an extra Bool parameter, which we’ll fill by changing the controller shortly.

uartRx
:: forall period. (KnownNat period, 1 <= period)
=> SNat period
-> Bit
-> Bool
-> State RxS (Maybe (Unsigned 8), RxFlags)

Chapter 18 Compucolor II510

uartRx period serialIn reset = do
rxResult <-

if reset then do
rxFlags .= RxFlags False False False
rxState .= RxIdle
return Nothing

else do
rxResult <- zoom rxState $ rxStep bitDuration serialIn
rxState <- use rxState
zoom rxFlags $ updateRxFlags rxState
return rxResult

rxFlags <- use rxFlags
return (unpack <$> rxResult, rxFlags)

where
bitDuration = snatToNum $ SNat @(HzToPeriod FastRate `Div` period)

18.7.5 Extending the TMS 5501 controller

In the controller, we need to expose the rxResult via ReadPort and the rxFlags via
the status byte. We also need to implement the overrun and the ready bits of the
status byte, and raise interrupt 4 when a new byte is received.

We start by extending the state and the input and output interfaces of controller.
We can’t use a single Maybe (Unsigned 8) for the rxBuf to package the last received
value together with the rxReady flag, because reading out the contents of rxBuf
only resets the flag, but keeps the actual value for subsequent repeated ReadPort
requests.

data CtlS = MkCtlS
{ _rxBuf :: Unsigned 8
, _rxReady :: Bool
, _rxOverrun :: Bool
...
}

data CtlInput = MkCtlInput
{ serialIn :: Bit
, rxResult :: Maybe (Unsigned 8)
, rxFlags :: RxFlags
...
}

18.7 Floppy drive 511

data CtlOutput = MkCtlOutput
{ rxReset :: Bool
...
}

In the main controller function, we react to a new rxResultvalue by overwriting
the receiver buffer, marking it as ready, and notifying the CPU via an interrupt:

controller inp@MkCtlInput{..} cmd = do
for_ rxResult $ \x -> do

whenM (use rxReady) $ rxOverrun .= True
setInt 4
rxReady .= True
rxBuf .= x

...

We also change getStatus, passing it the CtlInput so that it can fish out the
RxFlag bits from it. This is also where rxOverrun is reset. This fills in most of the
dummy bits in getStatus. The only remaining one is bit 4, which signals that the
serial transmitter is ready to send. Because we are only implementing the receiver
half of the UART, we keep this at True so that programs won’t get stuck waiting for
a never-ending transmission to finish.

getStatus MkCtlInput{..} = do
intPending <- isJust <$> getPending
rxReady <- use rxReady
rxOverrun <- use rxOverrun <* (rxOverrun .= False)

return $ bitCoerce $
rxFlags ^. rxStart :>
rxFlags ^. rxData :>
intPending :>
True :>
rxReady :>
bitToBool serialIn :>
rxOverrun :>
rxFlags ^. rxFrameError :>
Nil

The received byte itself is accessed via port 0. We clear rxReady so that the
subsequent reception won’t cause a false positive overrun, and also to let the CPU
know (in bit 3 of the status byte) that no new byte has been received since the last
time the buffer was read out.

Chapter 18 Compucolor II512

exec inp@MkInput{..} cmd = case cmd of
ReadPort 0x0 -> do

rxReady .= False
use rxBuf

One more thing remains: setting the rxReset output from execDiscrete. The
problem is that execDiscrete is quite far from the point where the output is com-
puted, which is in the top-level controller function. A WriterT Any monad trans-
former gives us a convenient way of bridging this distance: we change the type
of execDiscrete (and exec) to run in WriterT Any Ctl, we emit an Any True value
from reset, and we collect its output in the controller. Because this is the last time
we’ll touch these functions, it is worthwhile to look at their full definition, with the
changes marked with (*). First, execDiscrete:

execDiscrete :: Value -> WriterT Any Ctl ()
execDiscrete cmd = do

when (cmd `testBit` 0) reset
enableInputTrigger .= cmd `testBit` 2
enableAck .= cmd `testBit` 3
testingMode .= cmd `testBit` 4

where
reset = do

intBuf .= 0b0001_0000
timers .= repeat 0

tell $ Any True -- (*)
rxReady .= False -- (*)
rxOverrun .= False -- (*)

Then, the complete controller, with all the interrupt sources we have built up
over the last several sections:

controller inp@MkCtlInput{..} cmd = do
when sensorTrigger $ setInt 2
inputTriggerEnabled <- use enableInputTrigger
when (inputTrigger && inputTriggerEnabled) $ setInt 7
when tick countdown

for_ rxResult $ \x -> do
whenM (use rxReady) $ rxOverrun .= True
setInt 4
rxReady .= True
rxBuf .= x

18.7 Floppy drive 513

((int, dataOut), Any rxReset) <- runWriterT $ do -- (*)
shouldRespond <- use enableAck
if ack && shouldRespond then do

int <- clearPending
return (Just int, Nothing)

else do
dataOut <- traverse (exec inp) cmd
return (Nothing, dataOut)

irq <- isJust <$> getPending
parallelOut <- complement <$> use parallelBuf
fast <- use testingMode
return (dataOut, MkOutput{..})

This takes care of the implementation, now let’s integrate it into tms5501, and,
ultimately, mainBoard. From the outside, the only new pin of tms5501 is the serial
input pin, which we add to TMSInput:

data TMSInput = MkTMSInput
{ serialIn :: Bit
...
}

Internally, we can use record wildcards to take care of most of the wiring between
the controller and uartRx:

tms5501 MkInput{..} cmd = (dataOut, out)
where
...
(rxResult, rxFlags) = mealyStateB

(uncurryN $ uartRx (SNat @(DomainPeriod dom)))
initRxS
(serialIn, register False rxReset)

In a fully generic implementation, we would also need to pass the fast setting
to uartRx, and then switch between SlowRate and FastRate when computing the
bitDuration, similar to how we switch between slowTick and fastTick. Because
here we only implement the serial functionality to support the floppy drive, we can
get away with hardcoding fast mode.

In mainBoard, we hook up the floppy drive’s output to the serial input of the
TMS 5501. The floppy drive is controlled by certain lines of the parallel output: a
low bit 4 selects the floppy drive (and spins up the disk), while bits 2 to 0 drive the
stepper motor moving the head across tracks:

Chapter 18 Compucolor II514

mainBoard kbdCols frameEnd vidRead = (kbdRow, crtOut, vidAddr, vidWrite)
where
tmsIn = MkTMSInput

{ serialIn = floppyOut
...
}

floppyOut = register 1 $ floppyDrive sel phase
where

sel = not . (`testBit` 4) <$> parallelOut
phase = slice (SNat @2) (SNat @0) <$> parallelOut

18.7.6 Preparing disk images

At this point, the natural progression of this chapter would be to try out our new
code by adding one of the floppy images from http://www.compucolor.org/ and
loading it into our machine. However, before we can do that, we need to convert
these image files into flat bit sequences that we can use with the blockRamFile in
floppyDrive.

Each floppy image comes in a single file with the .ccvf file extension. This is
a simple textual file format, with the first line specifying the file format, followed
by some human-readable labels, then each track is stored as a list of hexadecimal
characters:

Compucolor Virtual Floppy Disk Image
Label Hangman (8k) 990003
Label 1. Hangman. Classic word game. Improves vocabulary and spelling
Label skills. If you miss, the Compucolor II will hang you right on
Label the screen.
Label 2. Math Tutor. Improves your mathematics skills. Presents
Label problems in addition, subtraction, multiplication, and
Label division. Five levels of difficulty.
Label 3. Two To Ten. Compucolor II deals the cards. Try to reach a
Label sum total including the "mystery number" hinted at by the
Label computer.
Track 0
00
...

Since each hexadecimal character encodes 4 bits, a full track of 15360 bits takes
up 3840 characters; the lines are also usually wrapped at column 64. We can parse
this file using a lightweight applicative regular expression parser:

http://www.compucolor.org/

18.7 Floppy drive 515

import Text.Regex.Applicative
import Text.Regex.Applicative.Common
import Data.Filtrable (filter)

type Track = Vec TrackSize Bit
type Disk = Vec TrackCount Track

diskLines :: Disk -> [String]
diskLines = toList . map show . concat

parseDisk :: String -> Disk
parseDisk = fromMaybe (error "CCVF parsing failed") . match disk
where
disk = magic *> many label *> tracks
magic = string "Compucolor Virtual Floppy Disk Image" *> eol
label = string "Label " *> few anySym <* eol

tracks = for indicesI $ \i -> trackHeader i *> track

trackHeader i = string "Track " *> filter (== i) decimal *> eol
track = bits <$> (sequenceA . repeat $ byte <* many eol)

eol = sym '\n'

byte = ((++#) @4 @4) <$> hexDigit <*> hexDigit

bits :: Vec n (BitVector 8) -> Vec (n * 8) Bit
bits = concatMap (reverse . bv2v)

The only unexpected complication is having to parse the input as bytes (i.e. two
hexadecimal digits at a time) instead of just 4-bit values. The reason for this is that
the CCVF file format packs each 8 bits of the 15360 bit track into a byte starting
at bit 0. In other words, the bit stream abcdefghjiklmnop is stored as two bytes
hgfedcba and ponmlji. This requires reverse-ing in our bits function; but that, in
turn, requires seeing all 8 bits together (otherwise we’d get dcba hgfe lkji ponm),
hence the need for the two-digit parser byte.

Note how the Track and Disk types drive the parsing in the definitions of tracks
and track: in both cases, the sub-parsers for one track and one hexadecimal digit
are required to match exactly the right times for the resulting vector sizes to line
up. So we automatically get a parse failure for e.g. disk images with a missing track.
Furthermore, we check track numbers in when parsing track headers, to ensure they
are in the right order.

Using the above function in a program with a thin layer of I/O scaffolding, we

Chapter 18 Compucolor II516

can take a CCVF file and prepare a disk.bin to be used in floppyDrive. Uploading
our latest version onto our FPGA development board, the quickest way to smoke-
testing the floppy drive is to use the dir command of the FCS: the key sequence
Escape followed by D gets us to the FCS> prompt, where we can issue the DIR
command.

We can try that out, and then instead of getting a list of file names and sizes, we
get. . .

ESKF CD00:00 0000
FCS ERROR - EDIR

What is going on here?

18.7.7 Timing

The problem is the mismatch between the CPU’s clock and the speed of the UART
and the floppy drive. We have calculated the latter starting from the 9,600 bits
per second serial speed, and then multiplied it with 8 to account for the testing
mode; this gives a bit rate of 76,800 bits per second, matching the bit rate of the
real Compucolor II’s floppy drive. When that bit rate is converted into the duration
of a single bit, as measured in clock cycles, we are using our 40 MHz clock as the
reference. Thus, the bitDuration computed in uartRx is 40,000,000 ÷ 76,800 = 520
cycles.

However, on a real Compucolor II, the clock runs at 2 MHz; the same calculation
gives us 2,000,000÷76,800 = 26 cycles as the bit duration. And of course the original
Compucolor firmware was written with the assumption that 26 cycles equal one bit.
In particular, when looking for the start of a sector, the CPU polls the TMS 5501
in a tight loop to measure the gap before a valid start bit. But if the UART and
the floppy is presenting the same bit for 520 cycles, a run of e.g. 100 gap bits will
take 520 · 100 = 52,000 cycles, which is a lot more than what the firmware expects
(26 · 100 = 2,600) , and so it gives up waiting for the first valid start bit, signaling a
disk I/O error.

Solving this problem requires changes at two different levels. On one hand, the
obvious solution to the 20-time speed difference is to just multiply FastRate with
20. This will result in a 26 cycle bit length both in the UART and the floppy drive.
The second layer is a bit more complicated and involves the timing of individual
Intel 8080 instructions. With FastRate boosted 20-fold, those 100 gap bits will be
read in 2,600 cycles, while the CPU runs the part of the Compucolor II system
software that was written to take roughly 2,600 cycles, so everything should match
up – but if our CPU is faster than a real Intel 8080, and some of the instructions

18.8 Cycle-count accuracy 517

of that loop finish in less cycles, the loop overall will finish before the gap is over,
leading the firmware down the path of a missing sector header.

If the difference is small, the problems caused can be quite subtle. For example,
if we compile our Compucolor II with FastRate set to SlowRate * 8 * 20, and load
one of the disk images that contain more than five files, the directory listing will
look something like this:

DIRECTORY CD0: HANGMAN 06

ATR NAME TYPE VR SBLK SIZE LBC LADR SADR

03 MENU .BAS;01 0006 0004 3B 829A 8455
03 HANGMN.BAS;01 000A 002B 38 829A 9A79
03 HARD .LIB;01 0035 001B 80 00D8 0010
03 EASY .LIB;01 0050 001B 80 00D8 0010
03 MATHTU.BAS;01 006B 001E 56 829A 9230
_ 03 TWO10 .BAS;01 0089 0032 7F 829A 9DF7
01 <FREE SPACE> 00BB 00D5

The extra underscore-like character after the fifth directory entry is because
the directory takes up two (consecutive) sectors, and when looking for the second
sector’s start, our CPU gets ahead of itself just enough to enable the “print disk
output to screen” interrupt-driven callback function a bit too early, before the useful
bytes of the directory entry are read. Debugging problems like this, even with the
help of a simulator, can be a daunting task.

We could play whack-a-mole with this and similar bugs by altering the bitrate
of the floppy drive; perhaps using 25 cycles per bit, instead of 26, would account
for the instruction length difference, and everything would line up again? What
we have here is software that was written for a particular hardware, using all
available knowledge about that hardware without any abstractions. The only way
to correctly run this software on our Intel 8080 look-alike is to increase the fidelity
of our implementation; i.e. make it look more like the real thing. And so we face the
reality of the situation head on and change our 8080 core so that every instruction
takes the same number of cycles as the real CPU.

18.8 Cycle-count accuracy

This is not as herculean a task as it might first seem. Instruction timings for the
Intel 8080 are well documented in the original data sheets, and our microcoded
implementation allows for very simple padding to make instructions take longer.

The longest Intel 8080 instruction is XTHL, taking 18 cycles total. That includes
one cycle for fetching the opcode 0xE3, which is before our microcode kicks in; to

Chapter 18 Compucolor II518

make our code line up better with the documentation, we will store the desired
lengths as one more than the number of micro-instructions. Recall our microcode
for XTHL:

microcode XTHL = padded $
pop2 >++>
step INothing (SwapReg2 RHL) INothing >++>
push2

pop2 and push2 both have length 2, giving our XTHL a total of 5 cycles. Then,
because we use a uniform microcode length for each instruction, we pad it with
ToAddrBuf micro-instructions into a full micro-program of length 8. If, instead, we
padded it to 17, without the early exit after the fifth step, we could easily achieve a
17-cycle instruction time without any further changes to the microcode.

type MicroLen = 17

padded
:: forall k n p pre post. (KnownNat k, KnownNat p)
=> ((n + 1 + p + k) ~ MicroLen)
=> SNat (n + 1 + p + 1)
-> MicroSteps (n + 1) pre False
-> Microcode

padded SNat ops = (first, withCont (usteps ++ uNOPs1) ++ uNOPs2)
where
(first, uops) = stepsOf ops
uNOPs1 = replicate (SNat @p) (uNOP, Nowhere)
uNOPs2 = repeat ((uNOP, Nowhere), False)

This function replaces our earlier padded function which only added the second
set of uNOPs. The change to most microcode is minor; here are two examples, XTHL
from earlier and XCHG:

microcode XTHL = padded (SNat @17) $
pop2 >++>
step INothing (SwapReg2 RHL) INothing >++>
push2

microcode XCHG = padded (SNat @3) $
step INothing (FromReg2 RHL) INothing >++>
step INothing (SwapReg2 RDE) INothing >++>
step INothing (SwapReg2 RHL) INothing

Here, XCHG already takes 3 cycles before padding, so padded (SNat @3) simply
adds 14 uNOP micro-instructions. We still use padded to ensure the correct length

18.8 Cycle-count accuracy 519

even if we change the microcode later.
We can implement length padding for most of the instructions in a similar way,

just by looking up their intended length in the Intel documentation, and using
padded to transform their microcode. The only tricky cases are the following:

• The conditional instructions CALLIf and RETIf take different number of cycles
depending on the checked condition’s value. For example, a RETIf should
be either 5 or 11 cycles (including the initial fetch). Our non-timing-accurate
implementation is 2 or 5 cycles:

microcode (RETIf cond) = padded $
step INothing (When $ Just cond) INothing >++>
popPC

If we padded it at the end with our new padded function, it would only apply
to the case when the condition holds. Instead, we need a way of adding
padding to the beginning of a microcode, which we can achieve by reflecting
the desired MicroSteps length into a term-level singleton using toUNat:

padding :: SNat (p + 1) -> MicroSteps (p + 1) False False
padding = go . toUNat

where
go :: UNat (p + 1) -> MicroSteps (p + 1) False False
go (USucc UZero) = step INothing nop INothing
go (USucc m@(USucc _)) = step INothing nop INothing >++> go m

If we now add 3 cycles of padding before checking the condition, it will come
out to a total of 5 (including the fetch and checking the condition), as desired:

microcode (RETIf cond) = padded (SNat @11) $
padding (SNat @3) >++>
step INothing (When $ Just cond) INothing >++>
popPC

Similarly, for CALLIf, which should take 11 or 17 cycles:

microcode (CALLIf cond) = padded (SNat @17) $
padding (SNat @7) >++>
imm2 >++>
step INothing (When cond) INothing >++>
pushPC >++>
step INothing Jump INothing

Chapter 18 Compucolor II520

• What about the third conditional instruction, JMPIf? Unfortunately, JMPIf
should take 10 cycles regardless of the condition holding or not. To see why
this is a problem, let’s try to apply our previous technique to JMPIf:

microcode (JMPIf cond) = padded (SNat @10) $
padding (SNat @5) >++> -- (*)
imm2 >++>
step INothing (When cond) INothing >++>
step INothing Jump INothing

What should the padding amount be on the marked line? If we use 5, that
means the un-taken branch takes 1 + 5 + 2 + 1 = 9 cycles, while the taken one
takes 1+ 5+ 2+ 1+ 1 = 10 cycles. If we use 6, that fixes the early-exit case, but
now the case where the branch is taken is too slow. There’s just no winning
here, because the Jump after the When will take one more cycle anyway.

We can work around this by spending an extra cycle after a When that evaluates
to false. This requires decreasing the padding in RETIf and CALLIf, but these
are the only instructions that use When. An easy way of wasting an extra cycle
before fetching the next instruction is to go to Init instead of Fetching, since
Init will, on the next cycle, transition to the Fetching state straight away. We
can do all this in exec, where GotoNext is handled:

exec :: Value -> Index MicroLen -> CPU ()
exec instr i = do

let (uop, after) = microcodeFor instr !! i
runExceptT (zoom microState $ uexec uop) >>= \case

Left GotoNext -> do
phase .= Init

-- Other parts unchanged

• For the arithmetic instructions ALU and CMP, the cycle count differs based on
the location of the source and destination arguments. For example, on a real
Intel 8080, ADD r imm takes 7 cycles, but ADD r1 r2 takes 4; it makes sense that
there would be a difference, since the former needs to do an extra fetch to get
the immediate argument’s value, whereas the latter has it on the ready in the
register r2. However, for any chosen source and destination mode, ALU and
CMP has the same length; this means we can just annotate the padding calls in
alu with the right numbers, and it will give us the correct timing for both ALU
and CMP:

18.9 Slowing down the CPU 521

alu
:: ALU
-> RHS
-> MicroInstr
-> Microcode

alu fun rhs writeback = case rhs of
Imm -> padded (SNat @7) $

step (IJust IncrPC) (Compute RegA fun SetZSP SetAC SetC)
INothing >++>

step INothing writeback INothing
LHS (Reg r) -> padded (SNat @4) $

step INothing (FromReg r) INothing >++>
step INothing (Compute RegA fun SetZSP SetAC SetC)

INothing >++>
step INothing writeback INothing

LHS (Addr rr) -> padded (SNat @7) $
step INothing (FromReg2 rr) INothing >++>
step (IJust FromPtr) (Compute RegA fun SetZSP SetAC SetC)

INothing >++>
step INothing writeback INothing

With the padded values filled in throughout the branches of microcode, we have
no more work left: padded will insert just the right amount of uNOP micro-steps
before the given microcode’s continuation flag is cleared. No changes are required
on the CPU itself, or even uexec.

18.9 Slowing down the CPU

The original Compucolor II runs at 2 MHz, whereas our machine is locked to the
800 × 600@60 VGA video mode’s pixel clock of 40 MHz. Interactive applications
(most importantly, games) that use busy waiting instead of timer interrupts will run
20 times faster. Now that we have a way of loading existing software from disks,
this problem is immediately apparent with almost any game we care to try out.

Luckily, we don’t need to complicate our lives with multiple clock domains to
solve this – we can just change our Intel 8080 core to add a pause pin which, when
set, inhibits state transitions in the given cycle. Then we can set pause to True in 19
out of every 20 cycles to get the effective CPU speed divided by 20.

The change to our 8080 interface is minor: just a new field in CPUIn:

data CPUIn = CPUIn
{ pause :: Bool
... }

Chapter 18 Compucolor II522

Inside the cpu itself, we want to exit prematurely if pause is set, i.e. we want to
put a guard $ not pause somewhere. But where? Let’s recall the definition of cpu,
with the details of the phase-specific execution omitted:

cpu :: Pure CPUIn -> CPUM CPUState CPUOut ()
cpu inp@CPUIn{..} = void . runMaybeT $ do

interrupted <- latchInterrupt inp
dataRead <- readByte inp

use phase >>= \case
...

Peripherals that run at the native 40 MHz clock can issue interrupts at any time,
so we need to latchInterrupt even when the CPU is otherwise paused. Similarly,
memory elements usually (unless the access is contended) respond in the cycle
immediately following the read request. With our planned scheme of pausing for
19 cycles out of 20, this means it is almost guaranteed that read results will come
back while paused.

So, we should check for pause after the data-in bus is sampled, and we’re done,
right?

cpu :: Pure CPUIn -> CPUM CPUState CPUOut ()
cpu inp@CPUIn{..} = void . runMaybeT $ do

interrupted <- latchInterrupt inp
dataRead <- readByte inp

guard $ not pause

use phase >>= \case
...

Turns out it’s not that easy: the return value of readByte isn’t used for anything
in the paused case, so the read result is lost by the time pause is unset and we’re
ready to make progress. Clearly, we need a way to latch read bytes the same way
we latch interrupts, accumulating while paused. To do this, we add a new bit of
state that is the data-in pair of dataOutLatch:

data CPUState = CPUState
{ _dataInLatch :: Maybe Value
...
}

18.9 Slowing down the CPU 523

initState pc0 = CPUState
{ _dataInLatch = Nothing
...
}

This latch is updated from the current dataIn in readByte, basically implement-
ing a one-element FIFO on memory reads. For reference, the non-latching version
of readByte was as follows:

readByte :: Pure CPUIn -> CPU Value
readByte CPUIn{..} = do

pending <- isJust <$> use addrLatch
if pending then maybe retry consume dataIn

else return $ fromJustX dataIn
where
retry = mzero
consume x = do

addrLatch .= Nothing
dataOutLatch .= Nothing
return x

In the new version, we still want to retry immediately if there’s a pending
memory request and nothing has come back yet; but if we do have a dataIn value,
we want to store it in dataInLatch (if the latter is still empty):

readByte CPUIn{..} = do
pending <- isJust <$> use addrLatch
current <- if pending then Just <$> maybe retry consume dataIn

else return dataIn

latched <- use dataInLatch
let latest = current <|> latched
dataInLatch .= latest

return $ fromJustX latest

Of course, we also need to clear dataInLatch when the CPU is not paused,
leading to the following final version of cpu:

cpu :: Pure CPUIn -> CPUM CPUState CPUOut ()
cpu inp@CPUIn{..} = void . runMaybeT $ do

interrupted <- latchInterrupt inp
dataRead <- readByte inp

Chapter 18 Compucolor II524

guard $ not pause
dataInLatch .= Nothing

use phase >>= \case
...

Jumping back into the Compucolor II itself, we can define the pause signal
in mainBoard using an inverted riseEvery, effectively turning it into a fallEvery
function:

mainBoard kbdCols frameEnd vidRead = (kbdRow, crtOut, vidAddr, vidWrite)
where
pause = not <$> riseEvery (SNat @20)
...

With this change, we also need to re-define FastRate as SlowRate * 8 instead of
the hacked SlowRate * 8 * 20, otherwise the sector start detection would fail for the
same reason as before: with the CPU running at 2 MHz, the firmware’s assumption
of each serial bit taking 26 CPU cycles can only be met if the bits actually take
26 · 20 = 520 real cycles.

18.10 Our complete computer

With the floppy drive and CPU timing issues out of the way, our machine is complete
and it is time to take stock. Our Compucolor II is faithful to the original in many
important ways:

• The CPU is compatible and accurate to instruction cycle count with the In-
tel 8080.

• All functionality of the TMS 5501 that is used by the Compucolor II is imple-
mented.

• The contents of the video buffer is interpreted correctly, including plot mode
and the values of the attribute bytes.

• Our CRT 5027 implements the dynamic video features used by Compucolor II
programs.

• The virtual floppy drive can be used to load programs from the library of
pre-existing Compucolor II software.

However, there is still some room for improvement:

• Just like its predecessors the Intercolor 8001 and the Compucolor 8001, the
original Compucolor II could also be used as a serial terminal, using the

18.10 Our complete computer 525

TMS 5501’s non-testing mode to implement 9600 bps UART communication.
To support this, we need a way to switch from the 9600× 8× 20 bps rate of the
floppy drive.

• Our video signal generator uses a fixed 64 × 32 character mode with 6 × 8
fonts; whereas the real CRT 5027 supports a wide range of character counts
and glyph sizes. Although on the Compucolor II, these settings cannot be
changed without potentially damaging the screen circuit, a fully reusable
CRT 5027 component would need to be more flexible.

We leave these, and some smaller, more self-contained improvement ideas as
exercises to the reader.

Exercises

• Although glyphs are 6 pixels wide, we use 8-bit ROM for the font and the
plot ROM. Change these to only store and return a BitVector 6. Note that
this will also require extending binLines to prepare ROM image files with
non-byte-sized contents.

• Running the CPU at 2 MHz is accurate to the Compucolor II’s speed, but
for computationally intensive programs, it might be better to flip back to the
native 40 MHz. For example, some games that generate randomized maps
might take tens of seconds to initialize each time the game is restarted. Add
a hardware “turbo” switch that temporarily turns off the pause signal. For
bonus points, change the TMS 5501 and the floppy drive to also be aware of
this setting, allowing disk I/O to work both in turbo and in normal mode.

• Implement writing to floppy disks. This requires adding a serial transmitter
to the TMS 5501, and using its output to overwrite the current bit in the floppy
drive when bit 3 of the TMS 5501’s parallel output is low.

• For virtually removable disks, store multiple images in multiple block RAMs,
and use some buttons on the FPGA board to switch between them.

• A more ambitious project is to implement physically removable media for the
floppy drive using an SD card.

• With all instructions stored as 17 micro-steps, our microcode is now more
wasteful than ever. Redesign the microcode ROM representation to use a
linked list, which means not only do we not need to store the trailing uNOPs,
we can even unify common microcode suffixes across instructions by using
the same next address at multiple points.

Chapter 18 Compucolor II526

18.11 Summary

• Reimplementing a general-purpose computer requires more fidelity than im-
plementing an abstract design like the CHIP-8 or a computer designed for
a narrow use case like Space Invaders, because of the open world nature of
existing software that was written with the fine details of the hardware in
mind.

• In particular, we’ve seen an example where the cycle count of each CPU
instruction needs to match the original hardware implementation, to get some
timing-sensitive parts of the firmware to work.

• We could reuse our Intel 8080 implementation (after improving its timing
fidelity), our VGA timer, and our UART; but some parts, most notably the
TMS 5501, are a collection of ad-hoc functionality that required specific code.

• Virtual disk storage can be implemented with a piece of memory with a
pointer: the geometry of the disk is implemented by cyclically scanning the
pointer over an address range; the disk spin speed corresponds to the rate
of advancing the pointer; and head servo commands can be interpreted by
changing the current address range.

Parting words

The 1970s started with the introduction of cheap, integrated circuit-based pocket
calculators and ended with home computers that made it affordable for individuals
to own a complete computer system. On the way there, video games and arcade
machines changed the entertainment landscape for generations.

Our journey has taken us through roughly the same stops, hitting the same story
beats; but this version is a modernized retelling of this story, in a (literally) more
modern language.

Digital electronics hardware has advanced in leaps and bounds since the seven-
ties. With this advancement came more complexity, and less overall visibility for
users and developers into what exactly goes on inside their computer. However,
these advancements are also making it possible for the individual hobbyist to recre-
ate these machines of the past on a sub-$100 FPGA development board, achieving
the deepest level of understanding a computer possible, short of worrying about
the quantum mechanical properties of individual transistors.

The progress in hardware has also been instrumental in unlocking the full poten-
tial of higher-level programming languages like Haskell. 1985’s Miranda couldn’t
possibly have run on the Commodore 64 released in 1983; in contrast, by the time the
Haskell 98 standard was finalized, the performance of the widespread i386-based
personal computers of the late nineties were wholly adequate to run Haskell 98
implementations like GHC 4.02.

At the time of writing this, the seventies ended 41 years ago, just as this author
was born. Maybe there will never be again a generation that just stumbles onto the
scene of computers and grows up not just with them, but in tandem with them. How-
ever, hopefully this book helps mitigating that somewhat by explaining the history
of this era with hardware descriptions that are readable, high level, executable, and
synthesizable at the same time — putting the fun of functional programming to use in
the domain of hardware.

527

Index

(!) operator, 29
(.!!.) operator, 66
(.:=) operator, 205, 213
(.==) operator, 58
(.==.) operator, 58
(.|>.) operator, 232
(.<|) operator, 232
(.<|.) operator, 232
(.<|>.) operator, 232
(==.) operator, 58
(|>.) operator, 232
:verilog, 23

acia, 403
ACIA (Asynchronous Communication Inter-

face Adapter), 402
Active type, 19
address decoding, 179, 289, 303, 404, 443, 452
Addressing type, 313, 314
Altair 8800, 331, 401
ALU (arithmetic logic unit), 273, 368
animation, 120, 130
Applicative-lifted binary operators, 58
arcade machine, 432
arithmetic logic unit, 273, 368

Barbies library, 211, 223
barrel shifter, 432
bbundle, 224, 225
BCD (binary coded decimal), 81
BCD type, 83
binary coded decimal, 81

arithmetic, 81
carry propagation, 83

bit order of Vec, 35
Bit type, 19
bitfile, 24
BitPack typeclass, 29
BitVector type, 29

Brainfuck, 187
block diagram, 199
instructions, 188
parsing, 190

bunbundle, 225
bundle, 32
Bundle typeclass, 32, 225
bus, 30

cathode-ray tube, 97
color, 101
drawing, 98
monochrome, 99

center, 128
changed, 59
CHIP-8, 237

graphics, 240, 250
instruction set, 243
registers, 239
stack, 239, 271

clock, 42
clock division, 46, 516, 521
clock domain, 20
clock manager, 112
Clock type, 43
ClockDivider type family, 47, 64
clockGen, 44
combinational circuit, 27
Compucolor 8001, 451
Compucolor II, 451
computation

models, 173
substrates, 5

conduit, 326
connect, 313, 318
constraints file, 24
coordinate transformation, 124, 438

character addressing, 419
masking, 127

529

Index530

scaling, 129
COSMAC VIP, 237
CPU, 181, 201, 239, 384, 397

accessing synchronous memory, 206, 213
execution phases, 184, 385
hardwired control, 185
instruction decoding, 185
microcode, 185, 349, 356, 379
Output as monoid, 204
state, 183

cpu, 208, 226
CPUM type, 212
cpuMachine, 208
createDomain, 50, 112, 169
CRT (cathode-ray tube), 97
CRT 5027, 452, 477

debounce, 58
debouncing, 56

keypad, 72
decodePS2, 413
delayedRam, 262
delayedRegister, 263
delayI, 265
delayVGA, 264
Digit type, 83
digital electronics, 6
driveSS, 68
DSignal type, 262, 437

electron gun, 97
Enable type, 43
enableGen, 44
external timing constraints, 51, 516

FCS (File Control System), 452
field-programmable gate array, 8
fifo, 168
File Control System, 452
firstJust2D, 76
flip-flop, 8
floppy

disk image, 514
drive, 503

FPGA (field-programmable gate array), 8
from, 313, 316
fromActive, 20
full adder, 10

half, 165
half adder, 10

halfIndex, 464
Handle type, 313, 318
hardware description language, 15
Harvard architecture, 175
HDL (hardware description language), 15
hexadecimal seven-segment encoder, 36
HiddenClockResetEnable typeclass, 52
hideClockResetEnable, 52
high, 19
higher kinded data, 211
HzToPeriod type family, 47

IC (integrated circuit), 6
IMaybe type, 354
Index type, 48
inputKeypad, 77
instruction decoding, 247
integrate, 235
integrated circuit, 6
Intel 8080, 331, 432, 451

instruction set, 344, 347
registers, 338
stack, 341, 373

Intercolor 8001, 451
interruptor, 337
interrupts, 336, 344, 380, 390, 434, 437, 486, 522
IsActive typeclass, 20
isRising, 55

keyboard, 69, 410, 416, 485, 492, 499
KeyEvent type, 72
KeyEvents type, 72
keymap, 76, 232, 415, 499
keypad, 69, 80, 230
keypadEvents, 72
KeyStates type, 71
KnownDomain typeclass, 43

lambda calculus, 173
latch, 7
Lava, 16
lessIdx, 58
LFSR (linear feedback shift register), 277
liftD, 263
linear-feedback shift register, 277
logic board, 220
lookup table, 12
low, 19
LUT (lookup table), 12

makeTopEntity macro, 23

Index 531

mapH, 327
maskEnd, 128
maskSides, 127
maskStart, 128
matchAddr, 316
matchDelay, 265
matchJust, 328
matchLeft, 405
matchRight, 405
matrix scanning, 69, 500
Matrix type, 71
mealy, 163
Mealy machine, 163
mealyState, 163, 202
mealyStateB, 164
memory, 174, 175

access contention, 185, 242, 256, 293, 297,
304, 327, 392, 437, 440, 471

access lag, 178, 257, 290, 294
block RAM primitives, 178
implemented as registers, 176

memory-mapped I/O, 180, 304, 320, 338, 405,
433

memoryMap, 325
memoryMap_, 315
Microcode type, 361
Microseconds type family, 49
Milliseconds type family, 49
moore, 93
Moore machine, 93
moreIdx, 58
MOS 6502, 331, 401
multiple clocks, 54
multiplexing, 63
mux, 40, 63

NAND gate, 7
Nanoseconds type family, 49
NFDataX typeclass, 43

one-hot encoding, 65
oneHot, 65
oscillateWhen, 56
override, 445

packWrite, 223
palette, 253, 423, 460, 476
parseScanCode, 414
Partial type, 212
persistence of vision, 65
Picoseconds type family, 49

pixel clock, 105, 467
pocket calculator, 79

accumulator, 85
serial interface, 169
software implementation, 89

Polarity type, 19
Pong, 145

block diagram, 146
port, 405
port name annotations, 23
Port type, 405
predIdx, 48
pressedKeys, 76
program counter, 174
PS/2 interface, 410
pseudo-random number generation, 277
Pure type, 212

RAM machine, 173
ram0, 313, 320
ramFromFile, 318
raster display, 99

serialization, 100
rasterizePattern, 141
Rasterizer type, 139
readWrite, 324
regEn, 55
register, 42

avoiding lag, 126, 256
register, 43
register-guarded recursion, 45
register-transfer level model, 43
Reset type, 43
resetGen, 44
risePeriod, 64
riseRate, 64
romFromFile, 313, 319
romFromVec, 320
roundRobin, 66
RTL (register-transfer level) model, 43

sample, 22
sampleN, 22
scale, 129
scanKeypad, 71
SDL2 library, 136, 147, 286, 461
Seconds type family, 49
serial communication, 155, 410, 484, 508

PS/2, 411
synchronicity, 155

serial echo, 168

Index532

serial escape codes, 169
serialRx, 167
serialRxDyn, 167
serialTx, 165
serialTxDyn, 165
seven-segment display, 33, 80, 230, 233

multiple digits, 64
sharedDelayed, 442
Signal type

Signal type
delay-indexed, 262

Signal type, 20
signalAutomaton, 228
Signed type, 35
simulateIO, 228
simulation, 21

high-level, 89, 135, 218, 286, 376, 380, 389,
407, 446, 458

low-level, 226, 292
monadic, 228

singlePort, 441
software debouncing, 57
Space Invaders, 431
Step type, 355
Steps type, 355
stream processing

Mealy machine, 163
Moore machine, 93

succIdx, 48
switch bouncing, 56
System clock, 44, 50

tag, 472
Template Haskell, 305

expressions, 306
splicing and quoting, 306
Typed TH, 310

temporal multiplexing, 63
Terminal library, 407, 455, 461
terminal library, 89
testing

high-level simulation, 89, 135, 218, 286,
380, 389, 407, 446

low-level simulation, 226, 292
QuickCheck, 84

time-domain multiplexing, 63
timer, 46, 47, 494
Tiny BASIC, 401

TMS 5501, 338, 452, 484
toActive, 20
toActiveDyn, 110
toggleKeypad, 72
Turing machine, 173

UART (Universal Asynchronous Serial Com-
munication), 156

unbraid, 474
unbundle, 32
Universal Asynchronous Serial Communica-

tion, 156
Unsigned type, 35
update, 213

Vec type, 29
vector display, 99
Verilog, 15

wrapper, 113
VGA (Video Graphics Array), 101

color depth, 103
signal lines, 102
sync pulses, 104
timing, 104

vgaDriver, 107, 110
VGADriver type, 106
VGAOut, 103
VGAState type, 108
VGASync type, 111
VGATiming type, 108
VGATimings type, 108
VHDL, 15
video

animation, 120
combinational pattern generator, 117
glyphs, 421, 458
stateful pattern generator, 118
text attributes, 460, 473
text-based, 417, 456

video buffer, 240, 434, 439
Video Graphics Array, 101
VideoParams type, 139
von Neumann architecture, 175

withClockResetEnable, 52
withMainWindow, 140

Zilog Z80, 331, 337

